00
Correct
00
Incorrect
00 : 00 : 0 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 33-year-old woman with a history of asthma, gout, rheumatoid arthritis, and type...

    Incorrect

    • A 33-year-old woman with a history of asthma, gout, rheumatoid arthritis, and type II diabetes mellitus has been admitted to the respiratory ward due to breathlessness after contracting SARS-CoV-2. Despite receiving 60% oxygen via a venturi mask, her oxygen saturation remains at 91%. The doctor decides to prescribe dexamethasone. What is the expected effect of this medication?

      Your Answer: Psychosis

      Correct Answer: Increased blood glucose levels

      Explanation:

      The use of corticosteroids, such as dexamethasone, can worsen diabetic control due to their anti-insulin effects. Dexamethasone, which is commonly used to manage severe SARS-CoV-2 infection, has a high glucocorticoid activity that can lead to insulin resistance and increased blood glucose levels. However, it is unlikely to cause an asthma exacerbation or a flare-up of rheumatoid arthritis or gout. While psychosis is a known side effect of dexamethasone, it is less common than an increase in blood glucose levels.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      33.8
      Seconds
  • Question 2 - A 7-year-old boy is brought to the doctor by his father with a...

    Incorrect

    • A 7-year-old boy is brought to the doctor by his father with a complaint of frequent urination and excessive thirst. Upon conducting a fasting blood glucose test, the results are found to be abnormally high. The doctor suspects type 1 diabetes and initiates first-line injectable therapy.

      What characteristic of this medication should be noted?

      Your Answer: Stimulates lipolysis

      Correct Answer: Decreases serum potassium

      Explanation:

      Insulin stimulates the Na+/K+ ATPase pump, which leads to a decrease in serum potassium levels. This is the primary treatment for type 1 diabetes, where the pancreas no longer produces insulin, causing high blood sugar levels. Injectable insulin allows glucose to enter cells, and insulin also increases cellular uptake of potassium while decreasing serum potassium levels. Insulin also stimulates muscle protein synthesis, reducing muscle protein loss. Insulin is secreted in response to hyperglycaemia, where high blood sugar levels trigger the beta cells of the pancreas to release insulin in healthy individuals.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      70.8
      Seconds
  • Question 3 - A 59-year-old man with a known history of type-2 diabetes comes for a...

    Incorrect

    • A 59-year-old man with a known history of type-2 diabetes comes for a check-up. He is currently on metformin only for his diabetes and reports compliance with the prescribed regimen.

      His HbA1c is 63 mmol/mol (target = 53mmol/mol) and the patient and clinician agree to initiate a sulfonylurea along with his metformin.

      What is the primary mode of action of the new treatment?

      Your Answer: Inhibits the principal enzyme that breaks down GLP-1 - an incretin hormone that increases insulin secretion and suppresses glucagon secretion

      Correct Answer: Increases stimulation of insulin secretion by pancreatic B-cells and decreases hepatic clearance of insulin

      Explanation:

      Sulfonylureas are a type of oral hypoglycemic agent that stimulate insulin secretion by pancreatic B-cells and reduce the clearance of insulin by the liver. They are known as insulin secretagogues.

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      51.5
      Seconds
  • Question 4 - A 50-year-old woman with thyroid cancer undergoes a total thyroidectomy. The histology report...

    Incorrect

    • A 50-year-old woman with thyroid cancer undergoes a total thyroidectomy. The histology report reveals a diagnosis of medullary thyroid cancer. What test would be most useful for screening for disease recurrence?

      Your Answer: Serum thyroglobulin levels

      Correct Answer: Serum calcitonin levels

      Explanation:

      The detection of sub clinical recurrence can be facilitated by monitoring the serum levels of calcitonin, which is often secreted by medullary thyroid cancers.

      Thyroid cancer rarely causes hyperthyroidism or hypothyroidism as it does not usually secrete thyroid hormones. The most common type of thyroid cancer is papillary carcinoma, which is often found in young females and has an excellent prognosis. Follicular carcinoma is less common, while medullary carcinoma is a cancer of the parafollicular cells that secrete calcitonin and is associated with multiple endocrine neoplasia type 2. Anaplastic carcinoma is rare and not responsive to treatment, causing pressure symptoms. Lymphoma is also rare and associated with Hashimoto’s thyroiditis.

      Management of papillary and follicular cancer involves a total thyroidectomy followed by radioiodine to kill residual cells. Yearly thyroglobulin levels are monitored to detect early recurrent disease. Papillary carcinoma usually contains a mixture of papillary and colloidal filled follicles, while follicular adenoma presents as a solitary thyroid nodule and malignancy can only be excluded on formal histological assessment. Follicular carcinoma may appear macroscopically encapsulated, but microscopically capsular invasion is seen. Medullary carcinoma is associated with raised serum calcitonin levels and familial genetic disease in up to 20% of cases. Anaplastic carcinoma is most common in elderly females and is treated by resection where possible, with palliation achieved through isthmusectomy and radiotherapy. Chemotherapy is ineffective.

    • This question is part of the following fields:

      • Endocrine System
      26.6
      Seconds
  • Question 5 - As a medical student in a GP practice, you encounter a mother who...

    Correct

    • As a medical student in a GP practice, you encounter a mother who brings in her 5-year-old son. The child has been eating well but is falling through the centiles and gaining height slowly. After conducting a thorough history, examination, and blood tests, you diagnose the child with growth-hormone insufficiency. The mother has several questions about the condition, including when the human body stops producing growth hormone. Can you provide information on the developmental stage that signals the cessation of growth hormone release in the human body?

      Your Answer: Growth hormone is secreted for life

      Explanation:

      Throughout adulthood, the maintenance of tissues still relies on sufficient levels of growth hormone. This hormone not only promotes growth, but also supports cellular regeneration and reproduction. While it is crucial for normal growth during childhood, it also helps to preserve muscle mass, facilitate organ growth, and boost the immune system, making its lifelong release necessary. Therefore, growth hormone is a key factor in growth during all stages of life, including before, during, and after puberty.

      Understanding Growth Hormone and Its Functions

      Growth hormone (GH) is a hormone produced by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in postnatal growth and development, as well as in regulating protein, lipid, and carbohydrate metabolism. GH acts on a transmembrane receptor for growth factor, leading to receptor dimerization and direct or indirect effects on tissues via insulin-like growth factor 1 (IGF-1), which is primarily secreted by the liver.

      GH secretion is regulated by various factors, including growth hormone releasing hormone (GHRH), fasting, exercise, and sleep. Conversely, glucose and somatostatin can decrease GH secretion. Disorders associated with GH include acromegaly, which results from excess GH, and GH deficiency, which can lead to short stature.

      In summary, GH is a vital hormone that plays a significant role in growth and metabolism. Understanding its functions and regulation can help in the diagnosis and treatment of GH-related disorders.

    • This question is part of the following fields:

      • Endocrine System
      44
      Seconds
  • Question 6 - A 23-year-old male visits his GP complaining of polyuria, chronic thirst and pale-coloured...

    Incorrect

    • A 23-year-old male visits his GP complaining of polyuria, chronic thirst and pale-coloured urine that have persisted for 3 months. He had a concussion from a car accident a month before the onset of his urinary symptoms. The patient is diagnosed with cranial diabetes insipidus after undergoing several tests.

      What would the water deprivation test likely reveal in this case?

      Your Answer: High urine osmolality after fluid deprivation, but normal after desmopressin

      Correct Answer: Low urine osmolality after fluid deprivation, but high after desmopressin

      Explanation:

      The correct answer is low urine osmolality after fluid deprivation, but high after desmopressin, for a patient with cranial diabetes insipidus (DI). This condition is characterized by polyuria, chronic thirst, and pale-coloured urine, and is caused by insufficient antidiuretic hormone (ADH) secretion. As a result, the kidneys are unable to concentrate urine, leading to a low urine osmolality even during water deprivation. However, the kidneys will respond to desmopressin (synthetic ADH) to produce concentrated urine.

      High urine osmolality after both fluid deprivation and desmopressin is incorrect, as it would be seen in a healthy individual or a patient with primary polydipsia, a psychogenic disorder characterized by excessive drinking despite being properly hydrated.

      Low urine osmolality after both fluid deprivation and desmopressin is incorrect, as this is typical of nephrogenic DI, a condition in which the kidneys are insensitive to ADH.

      High urine osmolality after fluid deprivation, but normal after desmopressin is incorrect, as this would not be commonly seen with any pathological state.

      Low urine osmolality after desmopressin, but high after fluid deprivation is incorrect, as this would not be commonly seen with any pathological state.

      The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.

    • This question is part of the following fields:

      • Endocrine System
      68.7
      Seconds
  • Question 7 - A man in his early 50s comes to the hospital with a fever...

    Correct

    • A man in his early 50s comes to the hospital with a fever and cough. An X-ray shows pneumonia in his left lower lobe. Upon arrival at the emergency department, his blood pressure is 83/60mmHg and his heart rate is 112/min. The doctor prescribes antibiotics and IV fluids.

      What is the primary way the body reacts to a drop in blood pressure?

      Your Answer: Insertion of AQP-2 channels in collecting ducts

      Explanation:

      When blood pressure drops, the body initiates several physiological responses, one of which is the activation of the renin-angiotensin aldosterone system (RAAS). This system breaks down bradykinin, a potent vasodilator, through the action of angiotensin-converting enzyme (ACE).

      RAAS activation results in increased aldosterone levels, which in turn increases the number of epithelial sodium channels (ENAC) to enhance sodium reabsorption.

      Another response to low blood pressure is the release of antidiuretic hormone, which promotes the insertion of aquaporin-2 channels in the collecting duct. This mechanism increases water reabsorption to help maintain fluid balance in the body.

      Understanding Antidiuretic Hormone (ADH)

      Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.

      ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.

      Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.

      Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.

    • This question is part of the following fields:

      • Endocrine System
      67.7
      Seconds
  • Question 8 - Cortisol is mainly synthesized by which of the following? ...

    Incorrect

    • Cortisol is mainly synthesized by which of the following?

      Your Answer: Adrenal medulla

      Correct Answer: Zona fasciculata of the adrenal

      Explanation:

      The adrenal gland’s zona fasciculata produces cortisol, with a relative glucocorticoid activity of 1. Prednisolone has a relative glucocorticoid activity of 4, while dexamethasone has a relative glucocorticoid activity of 25.

      Cortisol: Functions and Regulation

      Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.

      The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.

      Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.

    • This question is part of the following fields:

      • Endocrine System
      10
      Seconds
  • Question 9 - A 15-year-old male arrives at the emergency department with complaints of abdominal pain,...

    Correct

    • A 15-year-old male arrives at the emergency department with complaints of abdominal pain, nausea, and shortness of breath. He has a history of insulin-dependent diabetes and is diagnosed with diabetic ketoacidosis after undergoing tests. During treatment, which electrolyte should you be particularly cautious of, as it may become depleted in the body despite appearing normal in plasma concentrations?

      Your Answer: Potassium

      Explanation:

      Insulin normally helps to move potassium into cells, but in a state of ketoacidosis, there is a lack of insulin to perform this function. As a result, potassium leaks out of cells. Additionally, high levels of glucose in the blood lead to glycosuria in the urine, causing potassium loss through the kidneys.

      Even though patients in a ketoacidotic state may have normal levels of potassium in their blood, their overall potassium levels in the body are often depleted. When insulin is administered to these patients, it can cause a dangerous drop in potassium levels as the minimal amount of potassium left in the body is driven into cells.

      Diabetic ketoacidosis (DKA) is a serious complication of type 1 diabetes mellitus, accounting for around 6% of cases. It can also occur in rare cases of extreme stress in patients with type 2 diabetes mellitus. DKA is caused by uncontrolled lipolysis, resulting in an excess of free fatty acids that are converted to ketone bodies. The most common precipitating factors of DKA are infection, missed insulin doses, and myocardial infarction. Symptoms include abdominal pain, polyuria, polydipsia, dehydration, Kussmaul respiration, and breath that smells like acetone. Diagnostic criteria include glucose levels above 11 mmol/l or known diabetes mellitus, pH below 7.3, bicarbonate below 15 mmol/l, and ketones above 3 mmol/l or urine ketones ++ on dipstick.

      Management of DKA involves fluid replacement, insulin, and correction of electrolyte disturbance. Fluid replacement is necessary as most patients with DKA are deplete around 5-8 litres. Isotonic saline is used initially, even if the patient is severely acidotic. Insulin is administered through an intravenous infusion, and correction of electrolyte disturbance is necessary. Long-acting insulin should be continued, while short-acting insulin should be stopped. Complications may occur from DKA itself or the treatment, such as gastric stasis, thromboembolism, arrhythmias, acute respiratory distress syndrome, acute kidney injury, and cerebral edema. Children and young adults are particularly vulnerable to cerebral edema following fluid resuscitation in DKA and often need 1:1 nursing to monitor neuro-observations, headache, irritability, visual disturbance, focal neurology, etc.

    • This question is part of the following fields:

      • Endocrine System
      23.7
      Seconds
  • Question 10 - A young male with a history of diabetes mellitus type 1 is admitted...

    Incorrect

    • A young male with a history of diabetes mellitus type 1 is admitted to the emergency department. He was previously found to be confused by his roommates in his room. As well as this, he complains of nausea and abdominal pain.

      An ECG is performed and shows tall tented T waves.

      A simple blood test reveals marked hyperglycemia. A urinalysis shows the presence of ketones ++.

      His bloods show the following:

      Hb 136 g/L Male: (135-180)
      Platelets 210 * 109/L (150 - 400)
      WBC 9.5 * 109/L (4.0 - 11.0)

      Na+ 137 mmol/L (135 - 145)
      K+ 7.1 mmol/L (3.5 - 5.0)
      Bicarbonate 31 mmol/L (22 - 29)
      Urea 8.0 mmol/L (2.0 - 7.0)
      Creatinine 155 µmol/L (55 - 120)

      He is given insulin, calcium gluconate and IV saline.

      What is the main mechanism as to why the patient's potassium level will decrease?

      Your Answer: Insulin signals increase of voltage-gated potassium channels

      Correct Answer: Insulin increases sodium potassium pump

      Explanation:

      Insulin stimulates the Na+/K+ ATPase pump, leading to a decrease in serum potassium levels. This is primarily achieved through increased activity of the sodium-potassium pump, which is triggered by phosphorylation of the transmembrane subunits in response to insulin. While calcium gluconate is used to protect the heart during hyperkalaemia-induced arrhythmias, it does not affect potassium levels. Although IV fluids can improve renal function and potassium clearance, they are not the primary method for reducing potassium levels. Calcium-activated potassium channels are present throughout the body and are activated by an increase in intracellular calcium levels during action potentials.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      70.7
      Seconds
  • Question 11 - A 42-year-old woman visits her GP complaining of chest pain. She has a...

    Correct

    • A 42-year-old woman visits her GP complaining of chest pain. She has a history of hypertension and is currently taking metformin for diabetes. The GP observes that her BMI is 45. What is a possible complication of the metabolic syndrome in this case?

      Your Answer: Ischemic stroke

      Explanation:

      Metabolic syndrome is a group of risk factors for cardiovascular disease that are caused by insulin resistance and central obesity.

      Obesity is associated with higher rates of illness and death, as well as decreased productivity and functioning, increased healthcare expenses, and social and economic discrimination.

      The consequences of obesity include strokes, type 2 diabetes, heart disease, certain cancers (such as breast, colon, and endometrial), polycystic ovarian syndrome, obstructive sleep apnea, fatty liver, gallstones, and mental health issues.

      The Physiology of Obesity: Leptin and Ghrelin

      Leptin is a hormone produced by adipose tissue that plays a crucial role in regulating body weight. It acts on the hypothalamus, specifically on the satiety centers, to decrease appetite and induce feelings of fullness. In cases of obesity, where there is an excess of adipose tissue, leptin levels are high. Leptin also stimulates the release of melanocyte-stimulating hormone (MSH) and corticotrophin-releasing hormone (CRH), which further contribute to the regulation of appetite. On the other hand, low levels of leptin stimulate the release of neuropeptide Y (NPY), which increases appetite.

      Ghrelin, on the other hand, is a hormone that stimulates hunger. It is mainly produced by the P/D1 cells lining the fundus of the stomach and epsilon cells of the pancreas. Ghrelin levels increase before meals, signaling the body to prepare for food intake, and decrease after meals, indicating that the body has received enough nutrients.

      In summary, the balance between leptin and ghrelin plays a crucial role in regulating appetite and body weight. In cases of obesity, there is an imbalance in this system, with high levels of leptin and potentially disrupted ghrelin signaling, leading to increased appetite and weight gain.

    • This question is part of the following fields:

      • Endocrine System
      14.2
      Seconds
  • Question 12 - A 40-year-old woman comes to her doctor complaining of sudden palpitations and occasional...

    Incorrect

    • A 40-year-old woman comes to her doctor complaining of sudden palpitations and occasional headaches without any apparent cause. She has no significant medical history and denies any stress in her personal or professional life. During the examination, she appears to be sweating and has a pale conjunctiva. Her heart rate is 120 beats per minute, regularly regular, and her blood pressure is 150/100 mmHg. The doctor suspects a phaeochromocytoma, a tumor of the adrenal medulla.

      Which test is the most likely to provide a definitive diagnosis?

      Your Answer: Aldosterone-renin plasma ratio

      Correct Answer: Urinary free adrenaline

      Explanation:

      Extra-adrenal tumors are often located near the aortic bifurcation and can be identified through a urinary free adrenaline test, which measures the levels of adrenaline and noradrenaline produced by the adrenal medulla. Meanwhile, a 24-hour urinary free cortisol test is used to diagnose Cushing’s Disease, which is caused by excessive cortisol production from the zona fasciculata of the adrenal cortex. The aldosterone-renin ratio test is used to diagnose Conn’s Disease, which is caused by excessive aldosterone production from the zona glomerulosa of the adrenal cortex. Androgens are produced by the zona reticularis of the adrenal cortex. Addison’s Disease, a deficiency of cortisol, can be diagnosed through a short synacthen test.

      Adrenal Physiology: Medulla and Cortex

      The adrenal gland is composed of two main parts: the medulla and the cortex. The medulla is responsible for secreting the catecholamines noradrenaline and adrenaline, which are released in response to sympathetic nervous system stimulation. The chromaffin cells of the medulla are innervated by the splanchnic nerves, and the release of these hormones is triggered by the secretion of acetylcholine from preganglionic sympathetic fibers. Phaeochromocytomas, which are tumors derived from chromaffin cells, can cause excessive secretion of both adrenaline and noradrenaline.

      The adrenal cortex is divided into three distinct zones: the zona glomerulosa, zona fasciculata, and zona reticularis. Each zone is responsible for secreting different hormones. The outer zone, zona glomerulosa, secretes aldosterone, which regulates electrolyte balance and blood pressure. The middle zone, zona fasciculata, secretes glucocorticoids, which are involved in the regulation of metabolism, immune function, and stress response. The inner zone, zona reticularis, secretes androgens, which are involved in the development and maintenance of male sex characteristics.

      Most of the hormones secreted by the adrenal cortex, including glucocorticoids and aldosterone, are bound to plasma proteins in the circulation. Glucocorticoids are inactivated and excreted by the liver. Understanding the physiology of the adrenal gland is important for the diagnosis and treatment of various endocrine disorders.

    • This question is part of the following fields:

      • Endocrine System
      17.5
      Seconds
  • Question 13 - A 39-year old male visits the GP complaining of nipple discharge. Upon examination,...

    Incorrect

    • A 39-year old male visits the GP complaining of nipple discharge. Upon examination, it is found that his serum prolactin levels are significantly high. Besides prolactin releasing hormone, which other hypothalamic hormone can stimulate the secretion of prolactin?

      Your Answer:

      Correct Answer: Thyrotropin releasing hormone (TRH)

      Explanation:

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 14 - A 65-year-old man with a history of poorly-controlled type 2 diabetes presents to...

    Incorrect

    • A 65-year-old man with a history of poorly-controlled type 2 diabetes presents to the emergency department with altered mental status. His daughter reports that he has been complaining of increased thirst and urination over the past few days and has been skipping his insulin injections. On examination, he is dehydrated with a GCS of 3. His vital signs are recorded, and he is intubated and given ventilatory support. An arterial blood gas shows mild metabolic acidosis and his capillary blood glucose is undetectable. What is the next most appropriate step in his treatment?

      Your Answer:

      Correct Answer: 0.9% sodium chloride

      Explanation:

      In the ABCDE approach, the patient should be promptly given sodium chloride to restore their intravascular volume and maintain circulatory function. However, insulin is not recommended as an initial treatment for HHS. This is because glucose in the intravascular space helps maintain circulating volume, which is crucial for dehydrated patients. Administering insulin before fluid resuscitation can cause a reduction in intravascular volume and worsen hypotension. It may also worsen pre-existing hypokalaemia by driving potassium into the intracellular space. Potassium chloride should be administered only after fluid resuscitation and guided by potassium levels obtained from an arterial blood gas. Thiamine supplementation is not indicated at the moment as urgent resuscitation should be the priority.

      Hyperosmolar hyperglycaemic state (HHS) is a serious medical emergency that can be challenging to manage and has a high mortality rate of up to 20%. It is typically seen in elderly patients with type 2 diabetes mellitus (T2DM) and is caused by hyperglycaemia leading to osmotic diuresis, severe dehydration, and electrolyte imbalances. HHS develops gradually over several days, resulting in extreme dehydration and metabolic disturbances. Symptoms include polyuria, polydipsia, lethargy, nausea, vomiting, altered consciousness, and focal neurological deficits. Diagnosis is based on hypovolaemia, marked hyperglycaemia, significantly raised serum osmolarity, and no significant hyperketonaemia or acidosis.

      Management of HHS involves fluid replacement with IV 0.9% sodium chloride solution at a rate of 0.5-1 L/hour, depending on clinical assessment. Potassium levels should be monitored and added to fluids as needed. Insulin should not be given unless blood glucose stops falling while giving IV fluids. Patients are at risk of thrombosis due to hyperviscosity, so venous thromboembolism prophylaxis is recommended. Complications of HHS include vascular complications such as myocardial infarction and stroke.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 15 - A 42-year-old woman comes in with a pathological fracture of her left femur....

    Incorrect

    • A 42-year-old woman comes in with a pathological fracture of her left femur. She had a renal transplant in the past due to end stage renal failure. Her blood tests show:

      - Serum Ca2+ 2.80
      - PTH 88 pg/ml
      - Phosphate 0.30

      The surgeon decides to perform a parathyroidectomy based on these results. What is the most likely appearance to be identified when the glands are assessed histologically?

      Your Answer:

      Correct Answer: Hyperplasia of the gland

      Explanation:

      It is probable that this is a case of tertiary hyperparathyroidism, characterized by elevated levels of Calcium and PTH, and decreased levels of phosphate. As a result, the glands are likely to be hyperplastic. It is important to note that hypertrophy is an incorrect term to use in this context, as it suggests an increase in size without an increase in the number of cells.

      Parathyroid Glands and Disorders of Calcium Metabolism

      The parathyroid glands play a crucial role in regulating calcium levels in the body. Hyperparathyroidism is a disorder that occurs when these glands produce too much parathyroid hormone (PTH), leading to abnormal calcium metabolism. Primary hyperparathyroidism is the most common form and is usually caused by a solitary adenoma. Secondary hyperparathyroidism occurs as a result of low calcium levels, often in the setting of chronic renal failure. Tertiary hyperparathyroidism is a rare condition that occurs when hyperplasia of the parathyroid glands persists after correction of underlying renal disorder.

      Diagnosis of hyperparathyroidism is based on hormone profiles and clinical features. Treatment options vary depending on the type and severity of the disorder. Surgery is usually indicated for primary hyperparathyroidism if certain criteria are met, such as elevated serum calcium levels, hypercalciuria, and nephrolithiasis. Secondary hyperparathyroidism is typically managed with medical therapy, while surgery may be necessary for persistent symptoms such as bone pain and soft tissue calcifications. Tertiary hyperparathyroidism may resolve on its own within a year after transplant, but surgery may be required if an autonomously functioning parathyroid gland is present. It is important to consider differential diagnoses, such as benign familial hypocalciuric hypercalcaemia, which is a rare but relatively benign condition.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 16 - A 65-year-old man presents to the Emergency Department with confusion, drowsiness, and nausea...

    Incorrect

    • A 65-year-old man presents to the Emergency Department with confusion, drowsiness, and nausea accompanied by vomiting. His daughter reports that he has been feeling fatigued and unwell with a persistent cough, and he has been smoking 20 cigarettes per day for 45 years. The patient is unable to provide a complete medical history due to his confusion, but he mentions that he sometimes coughs up blood and his urine has been darker than usual. On examination, he appears to be short of breath but euvolaemic. Blood tests reveal low serum sodium, high urinary sodium, low plasma osmolality, and high urinary osmolality. Renal and thyroid function tests are normal. A chest x-ray shows a lung carcinoma, leading you to suspect that this presentation may be caused by a syndrome of inappropriate antidiuretic hormone secretion.

      What is the underlying mechanism responsible for the hyponatraemia?

      Your Answer:

      Correct Answer: Insertion of aquaporin-2 channels

      Explanation:

      The insertion of aquaporin-2 channels is promoted by antidiuretic hormone, which facilitates water reabsorption. However, in the case of syndrome of inappropriate antidiuretic hormone secretion (SiADH), which is caused by small cell lung cancer, the normal negative feedback loop fails, resulting in the continuous production of ADH even when serum osmolality returns to normal. This leads to euvolemic hyponatremia, where the body retains water but continues to lose sodium, resulting in concentrated urine. The underlying mechanism of this condition is the persistent increase in the number of aquaporin-2 channels, which promotes water reabsorption, rather than any effect on sodium transport mechanisms.

      Understanding Antidiuretic Hormone (ADH)

      Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.

      ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.

      Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.

      Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 17 - A 32-year-old female patient visits your clinic complaining of fatigue and unexplained weight...

    Incorrect

    • A 32-year-old female patient visits your clinic complaining of fatigue and unexplained weight gain. She mentions feeling extremely sensitive to cold temperatures. You suspect hypothyroidism and decide to conduct a test on her serum levels of thyroid stimulating hormone (TSH) and free thyroxine (T4). Which of the following hormones is not secreted from the anterior pituitary gland, where TSH is released?

      Your Answer:

      Correct Answer: antidiuretic hormone

      Explanation:

      The hormone ADH (also known as vasopressin) is secreted by the posterior pituitary gland and acts in the collecting ducts of the kidneys to increase water reabsorption. Unlike ADH, all of the other hormone options presented are released from the anterior pituitary. ACTH is a component of the hypothalamic-pituitary-axis and increases the production and release of cortisol from the adrenal gland. GH (also called somatotropin) is an anabolic hormone that stimulates growth in childhood and has metabolic effects on protein, glucose, and lipids. FSH is a gonadotropin that promotes the maturation of germ cells.

      Thyroid disorders are commonly encountered in clinical practice, with hypothyroidism and thyrotoxicosis being the most prevalent. Women are ten times more likely to develop these conditions than men. The thyroid gland is a bi-lobed structure located in the anterior neck and is part of a hypothalamus-pituitary-end organ system that regulates the production of thyroxine and triiodothyronine hormones. These hormones help regulate energy sources, protein synthesis, and the body’s sensitivity to other hormones. Hypothyroidism can be primary or secondary, while thyrotoxicosis is mostly primary. Autoimmunity is the leading cause of thyroid problems in the developed world.

      Thyroid disorders can present in various ways, with symptoms often being the opposite depending on whether the thyroid gland is under or overactive. For example, hypothyroidism may result in weight gain, while thyrotoxicosis leads to weight loss. Thyroid function tests are the primary investigation for diagnosing thyroid disorders. These tests primarily look at serum TSH and T4 levels, with T3 being measured in specific cases. TSH levels are more sensitive than T4 levels for monitoring patients with existing thyroid problems.

      Treatment for thyroid disorders depends on the cause. Patients with hypothyroidism are given levothyroxine to replace the underlying deficiency. Patients with thyrotoxicosis may be treated with propranolol to control symptoms such as tremors, carbimazole to reduce thyroid hormone production, or radioiodine treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 18 - A 65-year-old woman with type 2 diabetes mellitus is being evaluated by her...

    Incorrect

    • A 65-year-old woman with type 2 diabetes mellitus is being evaluated by her diabetic nurse. Despite taking metformin for the past 6 months, her glycaemic control remains poor. To improve management, the decision is made to add sitagliptin (a dipeptidyl-peptidase 4 (DPP-4) inhibitor) to her current metformin regimen.

      What is the mechanism of action of the newly prescribed medication?

      Your Answer:

      Correct Answer: Increased levels of glucagon-like peptide 1 (GLP-1)

      Explanation:

      DPP-4 inhibitors, like sitagliptin, work by inhibiting the breakdown of incretins such as GLP-1 and GIP. This leads to higher levels of insulin being released, as incretins increase insulin release. These inhibitors are often weight-neutral, but can occasionally cause weight loss.

      The answer Increases cell sensitivity to insulin is incorrect, as this is the mechanism of action of metformin, not DPP-4 inhibitors. Metformin increases cell sensitivity to insulin, but the exact mechanism is not fully understood.

      Similarly, Inhibition of sodium-glucose co-transporter (SGLT2) is incorrect, as this is the mechanism of action of SGLT2 inhibitors, not DPP-4 inhibitors. SGLT2 inhibitors prevent glucose absorption in the kidneys, leading to higher levels of glucose in the urine and an increased risk of urinary tract infections.

      Lastly, Increases adipogenesis is incorrect, as this is the mechanism of action of thiazolidinediones, not DPP-4 inhibitors. Thiazolidinediones stimulate adipogenesis, causing cells to become more dependent on glucose for energy.

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 19 - A 29-year-old female has been diagnosed with hyperthyroidism. She is experiencing heat intolerance...

    Incorrect

    • A 29-year-old female has been diagnosed with hyperthyroidism. She is experiencing heat intolerance and is very frightened by her palpitations. The GP prescribes Carbimazole and a second medication to manage the palpitations. Which receptors are being overstimulated by the increased catecholamine effects in this patient, leading to her palpitations?

      Your Answer:

      Correct Answer: β1 receptors

      Explanation:

      The sensitivity of the body to catecholamines is heightened by thyroid hormones. When catecholamines activate the β1 receptors in the heart, it leads to an elevation in heart rate.

      Thyroid disorders are commonly encountered in clinical practice, with hypothyroidism and thyrotoxicosis being the most prevalent. Women are ten times more likely to develop these conditions than men. The thyroid gland is a bi-lobed structure located in the anterior neck and is part of a hypothalamus-pituitary-end organ system that regulates the production of thyroxine and triiodothyronine hormones. These hormones help regulate energy sources, protein synthesis, and the body’s sensitivity to other hormones. Hypothyroidism can be primary or secondary, while thyrotoxicosis is mostly primary. Autoimmunity is the leading cause of thyroid problems in the developed world.

      Thyroid disorders can present in various ways, with symptoms often being the opposite depending on whether the thyroid gland is under or overactive. For example, hypothyroidism may result in weight gain, while thyrotoxicosis leads to weight loss. Thyroid function tests are the primary investigation for diagnosing thyroid disorders. These tests primarily look at serum TSH and T4 levels, with T3 being measured in specific cases. TSH levels are more sensitive than T4 levels for monitoring patients with existing thyroid problems.

      Treatment for thyroid disorders depends on the cause. Patients with hypothyroidism are given levothyroxine to replace the underlying deficiency. Patients with thyrotoxicosis may be treated with propranolol to control symptoms such as tremors, carbimazole to reduce thyroid hormone production, or radioiodine treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 20 - These thyroid function tests were obtained on a 55-year-old female who has recently...

    Incorrect

    • These thyroid function tests were obtained on a 55-year-old female who has recently been treated for hypertension:
      Free T4 28.5 pmol/L (9.8-23.1)
      TSH <0.02 mU/L (0.35-5.5)
      Free T3 10.8 pmol/L (3.5-6.5)
      She now presents with typical symptoms of hyperthyroidism.
      Which medication is likely to have caused this?

      Your Answer:

      Correct Answer: Amiodarone

      Explanation:

      Amiodarone and its Effects on Thyroid Function

      Amiodarone is a medication that can have an impact on thyroid function, resulting in both hypo- and hyperthyroidism. This is due to the high iodine content in the drug, which contributes to its antiarrhythmic effects. Atenolol, on the other hand, is a beta blocker that is commonly used to treat thyrotoxicosis. Warfarin is another medication that is used to treat atrial fibrillation.

      There are two types of thyrotoxicosis that can be caused by amiodarone. Type 1 results in excess thyroxine synthesis, while type 2 leads to the release of excess thyroxine but normal levels of synthesis. It is important for healthcare professionals to monitor thyroid function in patients taking amiodarone and adjust treatment as necessary to prevent complications.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 21 - Sarah, a 25-year-old type 1 diabetic, is interested in joining a local running...

    Incorrect

    • Sarah, a 25-year-old type 1 diabetic, is interested in joining a local running group. As her physician, it is important to inform her of the potential impact this increase in physical activity may have on her blood sugar levels. What advice do you give her?

      Your Answer:

      Correct Answer: She is at risk of an early and a late drop, hours later, in her blood glucose due muscle uptake and replacement of glycogen

      Explanation:

      Glucose levels are impacted by exercise in various ways. Firstly, there is an initial decrease due to the increased uptake of glucose in the muscles through GLUT-2, which does not require insulin. Secondly, during high-intensity sports, the release of adrenaline and cortisol can cause a temporary increase in blood glucose levels, especially during competitive events. Finally, there is a delayed decrease as the muscles and liver glycogen are utilized during exercise and then replenished over the following hours.

      Glycogenesis – the process of storing glucose as glycogen

      Glycogenesis is the process of converting glucose into glycogen for storage in the liver and muscles. This process is important for maintaining blood glucose levels and providing energy during times of fasting or exercise. The key enzyme involved in glycogenesis is glycogen synthase, which catalyzes the formation of α-1,4-glycosidic bonds between glucose molecules to form glycogen. Branching enzyme then creates α-1,6-glycosidic bonds to form branches in the glycogen molecule. Glycogenin, a protein that acts as a primer for glycogen synthesis, is also involved in the process. Glycogenesis is regulated by hormones such as insulin and glucagon, which stimulate and inhibit glycogen synthesis, respectively. Understanding the process of glycogenesis is important for understanding how the body stores and utilizes glucose for energy.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 22 - A father brings his 14-year-old son to see you as he is concerned...

    Incorrect

    • A father brings his 14-year-old son to see you as he is concerned about his growth. He is taller than his peers, has not yet experienced puberty and has developed excessive body hair. He is referred to a specialist who diagnoses mild congenital adrenal hyperplasia.

      What is the most frequent deficiency leading to this condition?

      Your Answer:

      Correct Answer: 21-hydroxylase deficiency

      Explanation:

      The most common cause of congenital adrenal hyperplasia is 21-hydroxylase deficiency, while 17-hydroxylase deficiency is a rare cause. 17β-hydroxysteroid dehydrogenase deficiency results in a rare condition of sexual development, while 5-alpha reductase deficiency affects male sexual development.

      Understanding Congenital Adrenal Hyperplasia

      Congenital adrenal hyperplasia is a group of genetic disorders that affect the production of adrenal steroids. It is an autosomal recessive disorder, which means that both parents must carry the gene for the disorder to be passed on to their child. The most common cause of congenital adrenal hyperplasia is a deficiency in the enzyme 21-hydroxylase, which is responsible for the production of cortisol and aldosterone. This deficiency leads to low levels of cortisol, which triggers the anterior pituitary gland to produce high levels of adrenocorticotropic hormone (ACTH). ACTH then stimulates the adrenal glands to produce excess androgens, which can cause virilization in female infants.

      Other less common forms of congenital adrenal hyperplasia include 11-beta hydroxylase deficiency and 17-hydroxylase deficiency. These conditions also affect the production of adrenal steroids and can lead to similar symptoms.

      It is important to diagnose and treat congenital adrenal hyperplasia early to prevent complications such as adrenal crisis, growth failure, and infertility. Treatment typically involves hormone replacement therapy to replace the deficient hormones and suppress the excess androgens. With proper management, individuals with congenital adrenal hyperplasia can lead healthy and normal lives.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 23 - Mr. Smith is a 54-year-old man who visits your GP clinic for his...

    Incorrect

    • Mr. Smith is a 54-year-old man who visits your GP clinic for his annual review of his type 2 diabetes. He informs you that he has been managing it through diet for a few years, but lately, he has gained some weight. His latest HbA1C reading is 9.8% (normal range 3.7-5.0%). You suggest continuous dietary advice and prescribe metformin to regulate his blood glucose levels. Which of the following statements about metformin is accurate?

      Your Answer:

      Correct Answer: It decreases hepatic gluconeogenesis

      Explanation:

      While some diabetic treatments such as insulin and sulfonylureas can lead to weight gain, metformin is not associated with this side effect. Metformin functions by enhancing insulin sensitivity and reducing hepatic gluconeogenesis, without directly impacting insulin secretion from pancreatic beta cells, thus it does not cause significant hypoglycemia. Ghrelin, a hormone that controls appetite, is not influenced by any diabetic medications.

      Understanding Diabetes Mellitus: A Basic Overview

      Diabetes mellitus is a chronic condition characterized by abnormally raised levels of blood glucose. It is one of the most common conditions encountered in clinical practice and represents a significant burden on the health systems of the developed world. The management of diabetes mellitus is crucial as untreated type 1 diabetes would usually result in death. Poorly treated type 1 diabetes mellitus can still result in significant morbidity and mortality. The main focus of diabetes management now is reducing the incidence of macrovascular and microvascular complications.

      There are different types of diabetes mellitus, including type 1 diabetes mellitus, type 2 diabetes mellitus, prediabetes, gestational diabetes, maturity onset diabetes of the young, latent autoimmune diabetes of adults, and other types. The presentation of diabetes mellitus depends on the type, with type 1 diabetes mellitus often presenting with weight loss, polydipsia, polyuria, and diabetic ketoacidosis. On the other hand, type 2 diabetes mellitus is often picked up incidentally on routine blood tests and presents with polydipsia and polyuria.

      There are four main ways to check blood glucose, including a finger-prick bedside glucose monitor, a one-off blood glucose, a HbA1c, and a glucose tolerance test. The diagnostic criteria are determined by WHO, with a fasting glucose greater than or equal to 7.0 mmol/l and random glucose greater than or equal to 11.1 mmol/l being diagnostic of diabetes mellitus. Management of diabetes mellitus involves drug therapy to normalize blood glucose levels, monitoring for and treating any complications related to diabetes, and modifying any other risk factors for other conditions such as cardiovascular disease. The first-line drug for the vast majority of patients with type 2 diabetes mellitus is metformin, with second-line drugs including sulfonylureas, gliptins, and pioglitazone. Insulin is used if oral medication is not controlling the blood glucose to a sufficient degree.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 24 - A 45-year-old woman comes to the clinic complaining of polyuria. Upon further inquiry,...

    Incorrect

    • A 45-year-old woman comes to the clinic complaining of polyuria. Upon further inquiry, she reports experiencing polyphagia and polydipsia as well. Her blood test reveals hyperglycaemia and low C-peptide levels.

      What is the underlying mechanism causing her hyperglycaemia?

      Your Answer:

      Correct Answer: Decreased GLUT-4 expression

      Explanation:

      The movement of glucose into cells requires insulin. In this case, the patient is likely suffering from type 1 diabetes mellitus or latent autoimmune diabetes in adults (LADA) with low c-peptide levels, indicating a complete lack of insulin. As a result, insulin is unable to stimulate the expression of GLUT-4, which significantly reduces the uptake of glucose into skeletal and adipose cells.

      The patient’s low GLUT-1 expression is unlikely to be the cause of hyperglycemia. GLUT-1 is primarily expressed in fetal tissues and has a higher affinity for oxygen, allowing fetal cells to survive even in hypoglycemic conditions.

      GLUT-2 expression is mainly found in hepatocytes and beta-cells of the pancreas. It allows for the bi-directional movement of glucose, equalizing glucose concentrations inside and outside the cell membrane, and enabling glucose-sensitive cells to measure serum glucose levels and respond accordingly.

      GLUT-3 expression is mainly found in neuronal cells and has a high affinity, similar to GLUT-1. This allows for the survival of brain cells in hypoglycemic conditions.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 25 - A 25-year-old woman comes to the clinic with a thyroid cancer. She has...

    Incorrect

    • A 25-year-old woman comes to the clinic with a thyroid cancer. She has no significant family history and is in good health. During the examination, a nodule is found in the left lobe of her thyroid, which appears to be a small, distinct mass separate from the gland. What is the most probable cause of this finding?

      Your Answer:

      Correct Answer: Papillary carcinoma

      Explanation:

      The most frequent subtype of thyroid cancer is papillary carcinoma, which can lead to lymph node metastasis. This occurrence is uncommon in follicular tumors. Anaplastic carcinoma is rare in this age group and would result in more localized symptoms.

      Thyroid cancer rarely causes hyperthyroidism or hypothyroidism as it does not usually secrete thyroid hormones. The most common type of thyroid cancer is papillary carcinoma, which is often found in young females and has an excellent prognosis. Follicular carcinoma is less common, while medullary carcinoma is a cancer of the parafollicular cells that secrete calcitonin and is associated with multiple endocrine neoplasia type 2. Anaplastic carcinoma is rare and not responsive to treatment, causing pressure symptoms. Lymphoma is also rare and associated with Hashimoto’s thyroiditis.

      Management of papillary and follicular cancer involves a total thyroidectomy followed by radioiodine to kill residual cells. Yearly thyroglobulin levels are monitored to detect early recurrent disease. Papillary carcinoma usually contains a mixture of papillary and colloidal filled follicles, while follicular adenoma presents as a solitary thyroid nodule and malignancy can only be excluded on formal histological assessment. Follicular carcinoma may appear macroscopically encapsulated, but microscopically capsular invasion is seen. Medullary carcinoma is associated with raised serum calcitonin levels and familial genetic disease in up to 20% of cases. Anaplastic carcinoma is most common in elderly females and is treated by resection where possible, with palliation achieved through isthmusectomy and radiotherapy. Chemotherapy is ineffective.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 26 - A 27-year-old man who has been morbidly obese for the past six years...

    Incorrect

    • A 27-year-old man who has been morbidly obese for the past six years is being evaluated at the surgical bariatric clinic. Which hormone release would lead to an increase in appetite in this patient?

      Your Answer:

      Correct Answer: Ghrelin

      Explanation:

      Leptin is a hormone that reduces appetite, while ghrelin is a hormone that stimulates appetite. Although thyroxine can increase appetite, it is not consistent with the symptoms being described.

      The Physiology of Obesity: Leptin and Ghrelin

      Leptin is a hormone produced by adipose tissue that plays a crucial role in regulating body weight. It acts on the hypothalamus, specifically on the satiety centers, to decrease appetite and induce feelings of fullness. In cases of obesity, where there is an excess of adipose tissue, leptin levels are high. Leptin also stimulates the release of melanocyte-stimulating hormone (MSH) and corticotrophin-releasing hormone (CRH), which further contribute to the regulation of appetite. On the other hand, low levels of leptin stimulate the release of neuropeptide Y (NPY), which increases appetite.

      Ghrelin, on the other hand, is a hormone that stimulates hunger. It is mainly produced by the P/D1 cells lining the fundus of the stomach and epsilon cells of the pancreas. Ghrelin levels increase before meals, signaling the body to prepare for food intake, and decrease after meals, indicating that the body has received enough nutrients.

      In summary, the balance between leptin and ghrelin plays a crucial role in regulating appetite and body weight. In cases of obesity, there is an imbalance in this system, with high levels of leptin and potentially disrupted ghrelin signaling, leading to increased appetite and weight gain.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 27 - A 12-year-old girl is being informed about the typical changes that occur during...

    Incorrect

    • A 12-year-old girl is being informed about the typical changes that occur during puberty by her doctor. The doctor explains that there are three main changes that usually happen before menarche. What is the order in which these changes occur?

      Your Answer:

      Correct Answer: Breast buds, growth of pubic hair, growth of axillary hair

      Explanation:

      The onset of menarche is preceded by three sequential physical changes: the development of breast buds, growth of pubic hair, and growth of axillary hair. These changes are brought about by the hormone estrogen, which is crucial for the process of puberty.

      Puberty: Normal Changes in Males and Females

      Puberty is a natural process that marks the transition from childhood to adolescence. In males, the first sign of puberty is testicular growth, which typically occurs around the age of 12. Testicular volume greater than 4 ml indicates the onset of puberty. The maximum height spurt for boys occurs at the age of 14. On the other hand, in females, the first sign of puberty is breast development, which usually occurs around the age of 11.5. The height spurt for girls reaches its maximum early in puberty, at the age of 12, before menarche. Menarche, or the first menstrual period, typically occurs at the age of 13, with a range of 11-15 years. Following menarche, there is only a slight increase of about 4% in height.

      During puberty, it is normal for boys to experience gynaecomastia, or the development of breast tissue. Girls may also experience asymmetrical breast growth. Additionally, diffuse enlargement of the thyroid gland may be seen in both males and females. These changes are all part of the normal process of puberty and should not be a cause for concern.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 28 - Release of somatostatin from the pancreas will lead to what outcome? ...

    Incorrect

    • Release of somatostatin from the pancreas will lead to what outcome?

      Your Answer:

      Correct Answer: Decrease in pancreatic exocrine secretions

      Explanation:

      Octreotide is utilized to treat high output pancreatic fistulae by reducing exocrine pancreatic secretions, although parenteral feeding is the most effective treatment. It is also used to treat variceal bleeding and acromegaly.

      Octreotide inhibits the release of growth hormone and insulin from the pancreas. Additionally, somatostatin, which is released by the hypothalamus, triggers a negative feedback response on growth hormone.

      Somatostatin: The Inhibitor Hormone

      Somatostatin, also known as growth hormone inhibiting hormone (GHIH), is a hormone produced by delta cells found in the pancreas, pylorus, and duodenum. Its main function is to inhibit the secretion of growth hormone, insulin, and glucagon. It also decreases acid and pepsin secretion, as well as pancreatic enzyme secretion. Additionally, somatostatin inhibits the trophic effects of gastrin and stimulates gastric mucous production.

      Somatostatin analogs are commonly used in the management of acromegaly, a condition characterized by excessive growth hormone secretion. These analogs work by inhibiting growth hormone secretion, thereby reducing the symptoms associated with acromegaly.

      The secretion of somatostatin is regulated by various factors. Its secretion increases in response to fat, bile salts, and glucose in the intestinal lumen, as well as glucagon. On the other hand, insulin decreases the secretion of somatostatin.

      In summary, somatostatin plays a crucial role in regulating the secretion of various hormones and enzymes in the body. Its inhibitory effects on growth hormone, insulin, and glucagon make it an important hormone in the management of certain medical conditions.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 29 - A 42-year-old man with schizophrenia undergoes his yearly physical examination. He is currently...

    Incorrect

    • A 42-year-old man with schizophrenia undergoes his yearly physical examination. He is currently taking risperidone as part of his medication regimen.

      What is the most common issue that can be linked to the use of risperidone in this patient?

      Your Answer:

      Correct Answer: Galactorrhoea

      Explanation:

      Risperidone, an atypical antipsychotic, has the potential to increase prolactin levels. This is because it inhibits dopamine, which reduces dopamine-mediated inhibition of prolactin. Although elevated prolactin may not cause any symptoms, it can have adverse effects if persistently elevated. One of the major roles of prolactin is to stimulate milk production in the mammary glands. Therefore, any cause of raised prolactin can result in milk production, which is known as galactorrhoea. This can occur in both males and females due to raised prolactin levels. Galactorrhoea is the most likely side effect caused by risperidone.

      Raised prolactin levels can also lead to reduced libido and infertility in both sexes. However, it is unlikely to result in increased libido. Prolactin can interfere with other hormones, such as oestrogen and progesterone, which can cause irregular periods, but it does not specifically cause painful periods. Elevated levels of prolactin would not result in seizures. Risperidone is more likely to be associated with weight gain rather than weight loss, as it acts on the histamine receptor.

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 30 - An 80-year-old patient, Gwyneth, is being examined by her physician for recurring dizziness...

    Incorrect

    • An 80-year-old patient, Gwyneth, is being examined by her physician for recurring dizziness upon standing up, which is interfering with her daily activities. Gwyneth is in good health and does not take any regular medications. The physician diagnoses Gwyneth with orthostatic hypotension and prescribes fludrocortisone as a treatment.

      What is the most probable side effect that Gwyneth may encounter?

      Your Answer:

      Correct Answer: Fluid retention

      Explanation:

      Corticosteroids are a class of medications commonly prescribed for various clinical uses, such as treating allergies, inflammatory conditions, auto-immunity, and endogenous steroid replacement.

      There are different types of corticosteroids, each with varying levels of glucocorticoid and mineralocorticoid activity. Glucocorticoids mimic cortisol, which is involved in carbohydrate metabolism and the stress response, while mineralocorticoids mimic aldosterone, which regulates sodium and water retention in response to low blood pressure.

      The clinical uses and side effects of corticosteroids depend on their level of glucocorticoid and mineralocorticoid activity. Fludrocortisone, for example, has minimal glucocorticoid activity and high mineralocorticoid activity.

      Therefore, fluid retention is the most associated side effect with mineralocorticoid activity, while depression, hyperglycemia, osteoporosis, and peptic ulceration are side effects associated with glucocorticoid activity.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Endocrine System (4/12) 33%
Passmed