00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A 58-year-old patient presents to the clinic with a chief complaint of reduced...

    Incorrect

    • A 58-year-old patient presents to the clinic with a chief complaint of reduced night vision. Upon further examination, it is discovered that the patient has a medical history of pancreatic insufficiency, chronic diarrhea, and malabsorption. Can you identify which vitamin deficiency is commonly linked to issues with night vision?

      Your Answer: Vitamin B

      Correct Answer: Vitamin A

      Explanation:

      The Role of Vitamin A in Night Vision

      Vitamin A is essential for the production of rhodopsin, a protein found in the retina that is responsible for converting light into energy. This process involves the conversion of vitamin A into 11-cis retinal or all-trans retinol, which is stored in the pigment layer of the retina. Isomerase is an enzyme that plays a crucial role in the production of 11-cis retinal, which is then used to produce rhodopsin.

      A deficiency in vitamin A can lead to a problem with night vision, as the body is unable to produce enough rhodopsin to respond to changes in light. This can result in difficulty seeing in low light conditions, such as when driving at night or in dimly lit environments. It is important to ensure that the body receives an adequate amount of vitamin A through a balanced diet or supplements to maintain healthy vision.

    • This question is part of the following fields:

      • Clinical Sciences
      137.6
      Seconds
  • Question 2 - A neonatal hearing screening program screened 10,000 newborns by measuring otoacoustic emissions (OAE)....

    Incorrect

    • A neonatal hearing screening program screened 10,000 newborns by measuring otoacoustic emissions (OAE). Out of these, 200 newborns failed the screening test and were invited for a test of brainstem auditory evoked potential (BAEP), which is considered the gold standard for diagnosing hearing impairment in newborns. Among these 200 newborns, 100 were confirmed to have hearing impairment by BAEP. What is the correct statement regarding this scenario?

      Your Answer: The specificity of the screening test is 50%

      Correct Answer: The accuracy of the screening test cannot be determined

      Explanation:

      Limitations of Screening Test Results

      In the study, 200 out of 10,000 subjects were found to have hearing impairment through a screening test. However, for the 9,800 subjects who tested negative, no further testing was conducted to confirm if they truly did not have hearing impairment. This means that we cannot determine the accuracy of the screening test from the data provided, nor can we calculate the sensitivity, specificity, or negative predictive values. The only value that can be calculated is the positive predictive value, which is 50%. It is important to note the limitations of screening test results and the need for further testing to confirm diagnoses.

    • This question is part of the following fields:

      • Clinical Sciences
      31
      Seconds
  • Question 3 - A 43-year-old male patient, who is a heavy drinker, has been admitted to...

    Incorrect

    • A 43-year-old male patient, who is a heavy drinker, has been admitted to the hospital due to a variceal bleed. The patient requires a blood transfusion as his blood is clotting very slowly. It is suspected that his excessive alcohol consumption is hindering the liver's ability to recycle vitamin K, which is essential for coagulation. Can you identify the clotting factors that are dependent on vitamin K?

      Your Answer: Factors II, VII, VIII and XII

      Correct Answer: Factors II, VII, IX and X

      Explanation:

      Vitamin K and its Role in Clotting Factor Production

      The production of clotting factors II, VII, IX, and X is dependent on vitamin K. This vitamin acts as a cofactor during the production of these factors. Vitamin K is stored in the liver in small amounts and requires recycling via an enzyme to maintain adequate production levels of the clotting factors. However, liver disease or excessive alcohol consumption can disrupt the recycling process, leading to a relative deficiency of vitamin K. This deficiency can interrupt the production of vitamin K-dependent clotting factors, which can result in bleeding disorders. Therefore, it is essential to maintain adequate levels of vitamin K to ensure proper clotting factor production.

    • This question is part of the following fields:

      • Clinical Sciences
      82.9
      Seconds
  • Question 4 - A 25-year-old farmer injures his hand on barbed wire and visits his GP...

    Incorrect

    • A 25-year-old farmer injures his hand on barbed wire and visits his GP after four days with a painful wound. The wound is swollen, tender, and hot to the touch. Which chemical mediator is responsible for increasing vascular permeability during acute inflammation?

      Your Answer: Complement components C5b - C9

      Correct Answer: Leukotrienes C4, D4, E4 (LTC4, D4, E4)

      Explanation:

      Increased vascular permeability is a key aspect of acute inflammation, caused by chemical mediators such as histamine, serotonin, complement components C3a and C5a, leukotrienes, oxygen free radicals, and PAF. LTB4 causes chemotaxis of neutrophils, TNF causes fever, and glycine is an inhibitory neurotransmitter that does not affect vascular permeability.

    • This question is part of the following fields:

      • Clinical Sciences
      38.5
      Seconds
  • Question 5 - A 65-year-old man visits the clinic with a complaint of experiencing blue vision....

    Incorrect

    • A 65-year-old man visits the clinic with a complaint of experiencing blue vision. He has started taking a high dose of Viagra to treat his erectile dysfunction, and you suspect that this medication may be the reason behind his visual changes. Which enzyme inhibition is primarily responsible for this side effect?

      Your Answer: PDE-2

      Correct Answer: PDE-6

      Explanation:

      The Role of Phosphodiesterase-6 in Vision and the Side Effects of Viagra

      Phosphodiesterase-6 plays a crucial role in the transmission of visual signals from rod cells in the retina to electrical signals in the brain. This enzyme is activated by changes in rhodopsin, which occur in response to exposure to light. However, high doses of Viagra, which is an inhibitor of PDE-5, can also inhibit PDE-6, leading to side effects such as blue vision. Patients may choose to reduce their dosage or tolerate these side effects in exchange for the improved sexual function that Viagra provides.

      Overall, the role of PDE-6 in vision and the potential side effects of Viagra is important for both medical professionals and patients. By weighing the benefits and risks of this medication, individuals can make informed decisions about their sexual health and overall well-being.

    • This question is part of the following fields:

      • Clinical Sciences
      12
      Seconds
  • Question 6 - Which compound is classified as a ketone? ...

    Incorrect

    • Which compound is classified as a ketone?

      Your Answer: Isoleucine

      Correct Answer: Acetoacetate

      Explanation:

      Ketone Bodies and their Production

      Ketone bodies, namely acetoacetate and beta-hydroxybutyrate, are synthesized when the levels of fatty acids in the bloodstream are elevated. This can occur during fasting, starvation, or when following a high-fat, low-carbohydrate diet. When these conditions arise, triglycerides from adipose tissue are broken down into fatty acids and re-enter the bloodstream. The fatty acids then enter liver cells and undergo beta-oxidation in the mitochondria to form acetyl CoA. As acetyl CoA accumulates, two molecules can combine to form acetoacetyl CoA, which is then converted to HMGCoA by the enzyme HMG CoA synthetase. HMGCoA lyase then changes the HMG CoA into acetoacetate, which is a ketone body.

      Ketones are essential as they provide fuel for body cells during times of fasting when glucose may be scarce. Brain cells are particularly able to use ketones as a fuel source.

    • This question is part of the following fields:

      • Clinical Sciences
      359.1
      Seconds
  • Question 7 - A woman in her 30s presents with an elevated alkaline phosphatase (ALP) level...

    Incorrect

    • A woman in her 30s presents with an elevated alkaline phosphatase (ALP) level during pregnancy. All other liver function tests are within normal range and she reports feeling well. What is the probable cause of this finding?

      Your Answer: Bone metastases

      Correct Answer: Placental production of ALP

      Explanation:

      Alkaline Phosphatase and Its Causes

      Alkaline phosphatase is an enzyme that can be found in various tissues in the body, making it a common part of liver function tests. An elevated level of ALP can be caused by different factors, including isoenzymes from the liver or bone, as well as the placenta in pregnant women. In children, elevated ALP levels are usually physiological and signify bone growth. However, transient hyperphosphatasia of infancy can cause a more dramatic increase in ALP, which is benign and resolves after a few months.

      Liver disease can also cause an increase in ALP, particularly with hepatobiliary obstruction, such as pancreatic carcinoma or a gallstone in the common bile duct. When bile drainage is obstructed, ALP synthesis increases significantly. On the other hand, liver diseases that predominantly cause hepatocellular damage will cause a lesser degree of ALP elevation.

      ALP also aids in the calcification process in bone and is found in osteoblasts. Therefore, any disease affecting bone turnover and calcification, including Paget’s disease, vitamin D deficiency, primary and secondary hyperparathyroidism, bone malignancies, and fracture healing, can cause abnormal ALP levels. Paget’s disease, which involves increased bone turnover, is a relatively common finding in older patients and can cause various symptoms such as tender bone/skull overgrowth, sensorineural deafness, pathological fractures, and rarely, high output cardiac failure.

      In summary, the causes of elevated ALP levels can help in diagnosing and managing various conditions affecting the liver and bone.

    • This question is part of the following fields:

      • Clinical Sciences
      43.4
      Seconds
  • Question 8 - What muscles are responsible for dorsiflexion of the ankle joint? ...

    Correct

    • What muscles are responsible for dorsiflexion of the ankle joint?

      Your Answer: Tibialis anterior

      Explanation:

      Muscles Involved in Ankle and Toe Movements

      The tibialis anterior muscle is responsible for dorsiflexion of the ankle joint, which means it helps lift the foot upwards towards the shin. On the other hand, the tibialis posterior, soleus, and gastrocnemius muscles are involved in plantar flexion, which is the movement of pointing the foot downwards. These muscles work together to push the foot off the ground during walking or running.

      Another muscle involved in foot movement is the flexor digitorum longus, which is responsible for flexion of the second to fifth toes. This muscle helps curl the toes downwards towards the sole of the foot. All of these muscles play important roles in the complex movements of the foot and ankle, allowing us to walk, run, jump, and perform other activities that require precise control of our lower limbs.

    • This question is part of the following fields:

      • Clinical Sciences
      28.9
      Seconds
  • Question 9 - A 28-year-old female patient has come to your clinic with worries about her...

    Incorrect

    • A 28-year-old female patient has come to your clinic with worries about her selenium levels. She has recently begun taking a selenium supplement.

      What is the primary function of selenium in the human body?

      Your Answer: Coagulation

      Correct Answer: Production of thyroid hormone, T3

      Explanation:

      The Importance of Selenium in the Body

      Selenium plays a crucial role in various bodily functions. One of its primary functions is the conversion of thyroid hormone T4 to T3, which requires a selenium-based enzyme called deiodinase. Additionally, selenium is an essential component of certain antioxidant enzymes, such as glutathione peroxidases, which help protect the body from oxidative damage. It also regulates cytokine production and cellular immune function, making it vital for maintaining a healthy immune system.

      Selenium can be found in various food sources, including tuna, sardines, liver, meat, fish, and wholegrain bread. However, some parts of the world have selenium-deficient soils, which can lead to a deficiency in crops and, subsequently, in individuals who consume them. Patients with inflammatory bowel diseases or pancreatic disorders are also at a higher risk of selenium deficiency than healthy individuals.

      A deficiency in selenium can result in poor immune strength, an increased risk of infection, heart failure, and muscle weakness. Therefore, it is crucial to ensure that the body receives an adequate amount of selenium to maintain optimal health.

    • This question is part of the following fields:

      • Clinical Sciences
      34
      Seconds
  • Question 10 - What is a true statement about baroreceptor impulses? ...

    Incorrect

    • What is a true statement about baroreceptor impulses?

      Your Answer: Excite the sympathetic vasoconstrictor centre

      Correct Answer: Inhibit the sympathetic nervous system

      Explanation:

      Baroreceptors and their role in regulating blood pressure

      Baroreceptors are specialized stretch receptors located in the walls of the internal carotid arteries. These receptors are activated when there is an increase in arterial pressure, which sends signals to the brain to inhibit the sympathetic nervous system. This, in turn, leads to a reduction in blood pressure and heart contractility.

      When blood pressure increases, the baroreceptors within the luminal wall stretch, triggering a negative feedback loop that helps to regulate blood pressure. However, it is important to note that baroreceptors do not work via the parasympathetic system or inhibit the vagal nerve, nor do they increase heart rate.

      Overall, baroreceptors play a crucial role in maintaining blood pressure homeostasis by detecting changes in pressure and sending signals to the brain to regulate the sympathetic nervous system. the function of these receptors can help in the development of treatments for hypertension and other cardiovascular diseases.

    • This question is part of the following fields:

      • Clinical Sciences
      80.1
      Seconds
  • Question 11 - Which electrolyte imbalance is frequently observed in individuals suffering from malnutrition? ...

    Incorrect

    • Which electrolyte imbalance is frequently observed in individuals suffering from malnutrition?

      Your Answer: Hypercalcaemia

      Correct Answer: Hypokalaemia

      Explanation:

      Electrolyte Abnormalities in Malnourished Individuals

      Malnutrition can lead to various changes in the body’s systems and physiology, particularly in the levels of electrolytes. The most common electrolyte abnormalities in malnourished individuals are hypokalaemia, hypocalcaemia, hypophosphataemia, and hypomagnesaemia. Prolonged malnutrition can cause the body to adapt to a reduced dietary supply of minerals, resulting in changes in renal physiology such as increased aldosterone secretion and reduced glomerular filtration rate. This leads to increased urinary excretion of potassium, calcium, magnesium, and phosphate, which can cause a tendency towards electrolyte imbalances over time.

      Moreover, severe malnutrition can cause reduced muscle bulk, resulting in low levels of production of urea and creatinine. However, reduced excretion can cause plasma levels to be normal or slightly reduced. As muscle breaks down to provide substrates for gluconeogenesis, a negative nitrogen balance ensues. Therefore, patients with severe malnutrition are at risk of refeeding syndrome once they start eating again or are treated with parenteral nutrition. To prevent this, prophylaxis with B vitamins, folic acid, and minerals is recommended.

    • This question is part of the following fields:

      • Clinical Sciences
      24.5
      Seconds
  • Question 12 - During a surgical procedure, the anaesthetist administers an intravenous antibiotic to a patient...

    Incorrect

    • During a surgical procedure, the anaesthetist administers an intravenous antibiotic to a patient in their 60s. Later on, the anaesthetist observes a sudden drop in the patient's blood pressure. The patient's pulse rate increases to over 120, and their extremities appear pale. Capillary refill takes more than 2 seconds, indicating slow blood flow. Despite minimal blood loss during the operation, the anaesthetist suspects the patient is experiencing circulatory shock. What type of shock is the patient likely to be suffering from?

      Your Answer: Septic

      Correct Answer: Anaphylactic

      Explanation:

      Shock and its Causes

      Shock is a condition where the circulation fails to adequately perfuse the body’s tissues. There are various types of shock, each with specific causes. Hypovolaemic shock may occur if there is an unidentified internal bleed, while cardiogenic shock may result from an increased risk of myocardial infarction during surgery. Septic shock is unlikely to occur during surgery as there is not enough time for an infection to establish itself in the circulation. The most probable cause of shock during surgery is anaphylactic shock, which may result from the administration of an anaesthetic agent. The components that are most likely to cause intra-operative anaesthesia are muscle relaxants, latex gloves, and intravenous antibiotics. the different types of shock and their causes is crucial in identifying and treating the condition promptly. Proper management of shock can help prevent further complications and improve patient outcomes.

    • This question is part of the following fields:

      • Clinical Sciences
      9.3
      Seconds
  • Question 13 - While taking a patient's medical history, you discover that there is a significant...

    Incorrect

    • While taking a patient's medical history, you discover that there is a significant family history of a particular disease. Diseases that are inherited in an autosomal dominant manner typically manifest in early adulthood due to structural gene abnormalities, with both males and females being affected equally. Which of the following diseases does not follow an autosomal dominant inheritance pattern?

      Your Answer: Marfan's syndrome

      Correct Answer: Haemochromatosis

      Explanation:

      Abnormal Binding Proteins Resulting in Iron Deposition and Multiple Organ Dysfunction

      Iron deposition due to an abnormality in binding proteins can lead to various health complications. This condition is characterized by the deposition of iron in different organs, including the heart, liver, pancreas, and skin. The abnormality in binding proteins results in the accumulation of iron in these organs, leading to cardiomyopathy, cirrhosis, pancreatic failure, and skin pigmentation.

      This condition is inherited in an autosomal recessive pattern, meaning that an individual must inherit two copies of the mutated gene, one from each parent, to develop the condition. The recessive form of this condition is also known as infantile polycystic kidney disease, which predominantly affects children.

      Overall, iron deposition due to an abnormality in binding proteins can cause multiple organ dysfunction and can be inherited in an autosomal recessive pattern. Early diagnosis and management of this condition are crucial to prevent further complications and improve the quality of life of affected individuals.

    • This question is part of the following fields:

      • Clinical Sciences
      12.9
      Seconds
  • Question 14 - The following blood gas results are obtained from a young adult patient with...

    Incorrect

    • The following blood gas results are obtained from a young adult patient with diabetes.
      pH 7.32 (7.36-7.44)
      PaO2 14.5 kPa (11.3-12.6)
      PaCO2 2.7 kPa (4.7-6.0)
      HCO3- 14 mmol/L (20-28)
      Base excess −10 mmol/L (+/-2)
      How should this data be interpreted accurately?

      Your Answer: Respiratory acidosis with partial metabolic compensation

      Correct Answer: Metabolic acidosis with partial respiratory compensation

      Explanation:

      Acidosis and its Causes

      Acidosis is a condition characterized by a low pH level, which can be caused by various factors. In this particular case, the patient’s pH level is 7.32, indicating acidosis. The low bicarbonate level suggests that the origin of the acidosis is metabolic, and the low base excess supports this. The lungs are compensating for the acidosis by increasing the clearance of carbon dioxide, resulting in a low PaCO2 level. However, it is important to note that compensation rarely reverses the pH change completely, and the patient is still considered to have metabolic acidosis.

      It is crucial not to jump to conclusions about the cause of acidosis without appropriate information. While diabetic ketoacidosis (DKA) is a common cause, other factors such as lactic acidosis (type A or B) or poisoning can also lead to acidosis. Therefore, a thorough evaluation is necessary to determine the underlying cause and provide appropriate treatment. the different types and causes of acidosis is essential for healthcare professionals to provide effective care for their patients.

    • This question is part of the following fields:

      • Clinical Sciences
      30
      Seconds
  • Question 15 - A study investigated the effectiveness of a new statin therapy in preventing ischaemic...

    Incorrect

    • A study investigated the effectiveness of a new statin therapy in preventing ischaemic heart disease in a diabetic population aged 60 and above. Over a period of five years, 1000 patients were randomly assigned to receive the new therapy and 1000 were given a placebo. The results showed that there were 150 myocardial infarcts (MI) in the placebo group and 100 in the group treated with the new statin. What is the number needed to treat to prevent one MI during the study period?

      Your Answer: 40

      Correct Answer: 20

      Explanation:

      The Glycaemic Index Method is a commonly used tool by dieticians and patients to determine the impact of different foods on blood glucose levels. This method involves calculating the area under a curve that shows the rise in blood glucose after consuming a test portion of food containing 50 grams of carbohydrate. The rationale behind using the GI index is that foods that cause a rapid and significant increase in blood glucose levels can lead to an increase in insulin production. This can put individuals at a higher risk of hyperinsulinaemia and weight gain.

      High GI foods are typically those that contain refined sugars and processed cereals, such as white bread and white rice. These foods can cause a rapid increase in blood glucose levels, leading to a surge in insulin production. On the other hand, low GI foods, such as vegetables, legumes, and beans, are less likely to cause a significant increase in blood glucose levels.

      Overall, the Glycaemic Index Method can be helpful in making informed food choices and managing blood glucose levels. By choosing low GI foods, individuals can reduce their risk of hyperinsulinaemia and weight gain, while still enjoying a healthy and balanced diet.

    • This question is part of the following fields:

      • Clinical Sciences
      35.3
      Seconds
  • Question 16 - How does the incidence of male breast cancer compared to that of female...

    Incorrect

    • How does the incidence of male breast cancer compared to that of female breast cancer?

      Your Answer: Incidence is the same - men and women have an equal risk of getting breast cancer

      Correct Answer: Incidence is lower - women are more likely to get breast cancer than men

      Explanation:

      Breast Cancer in Men

      Breast cancer is not just limited to women, as men can also develop this type of cancer. Although it is much rarer in men than in women, it is still possible for them to get it. Men have breast tissue, which means that they are susceptible to breast cancer. Approximately 1 in 100 breast cancers occur in men, and about 250 male breast cancers are diagnosed each year.

      Men who are at an increased risk, such as those with a strong family history of breast cancer, are more likely to develop this form of cancer. It is important for men to be aware of the signs and symptoms of breast cancer, which include a lump or swelling in the breast, nipple discharge, and changes in the skin around the breast. Early detection is key to successful treatment, so men should not hesitate to seek medical attention if they notice any of these symptoms.

    • This question is part of the following fields:

      • Clinical Sciences
      77.5
      Seconds
  • Question 17 - How would you define vigorous exercise? ...

    Correct

    • How would you define vigorous exercise?

      Your Answer: Exercising at 80% of maximal individual capacity

      Explanation:

      Exercise Intensity Levels

      Exercise intensity can be determined by comparing it to your maximum capacity or your typical resting state of activity. It is important to note that what may be considered moderate or intense for one person may differ for another based on their fitness and strength levels. Mild intensity exercise involves working at less than 3 times the activity at rest and 20-50% of your maximum capacity. Moderate intensity exercise involves working at 3-5.9 times the activity at rest or 50-60% of your maximum capacity. Examples of moderate intensity exercises include cycling on flat ground, walking fast, hiking, volleyball, and basketball. Vigorous intensity exercise involves working at 6-7 times the activity at rest or 70-80% of your maximum capacity. Examples of vigorous intensity exercises include running, swimming fast, cycling fast or uphill, hockey, martial arts, and aerobics. exercise intensity levels can help you tailor your workouts to your individual needs and goals.

    • This question is part of the following fields:

      • Clinical Sciences
      39.7
      Seconds
  • Question 18 - A pair visits the clinic to inquire about the likelihood of their future...

    Incorrect

    • A pair visits the clinic to inquire about the likelihood of their future offspring developing alpha thalassaemia. They both have thalassaemia trait. What is the accurate probability of their child being born with thalassaemia major?

      Your Answer: 5% risk

      Correct Answer: 25% risk

      Explanation:

      Thalassaemia Trait and the Risk of Inheriting Thalassaemia Major

      Thalassaemia trait individuals, who are heterozygous for the condition, do not have thalassaemia themselves. However, if their partner is also a carrier, there is a high risk of having a child born with thalassaemia major, which occurs when both parents pass on the thalassaemia gene. The risk of this happening is 1 in 4.

      It is important to note that individuals with thalassaemia trait have a 50% chance of passing on the gene to their children, who will also be carriers. There is also a 1 in 4 chance of their children not inheriting the thalassaemia gene at all.

      It is worth mentioning that the terminology used to describe thalassaemias has changed in recent years. People with beta thalassaemia can now be grouped into transfusion dependent or independent categories. the risk of inheriting thalassaemia major is crucial for individuals with thalassaemia trait who are planning to have children. Genetic counseling can help them make informed decisions about their family planning.

    • This question is part of the following fields:

      • Clinical Sciences
      72.6
      Seconds
  • Question 19 - Which type of antibody plays a crucial role in inhibiting the attachment of...

    Incorrect

    • Which type of antibody plays a crucial role in inhibiting the attachment of viruses to the apical membrane of enterocytes?

      Your Answer: G

      Correct Answer: A

      Explanation:

      The Functions of Different Types of Antibodies

      There are various types of B cells in the gut’s mucosa, collectively known as GALT. These B cells produce IgA dimers that attach to the basal aspect of enterocytes. Using their J chain, IgA dimers pass through epithelial cells and become sIgA, which is more resistant to intraluminal enzymatic breakdown. sIgA then enters the GIT lumen, where it helps to prevent viruses from binding to epithelial cells.

      The function of IgD is currently unknown, while IgE is crucial in responding to fungi, worms, and type I hypersensitivity reactions. IgG is the most specific antibody type, capable of crossing the placenta and forming antibody-antigen complexes. IgM forms pentamers and aids in activating complement.

      In summary, different types of antibodies have distinct functions in the body. IgA helps to block viruses in the gut, while IgE responds to certain allergens. IgG is highly specific and can cross the placenta, while IgM activates complement. The function of IgD remains a mystery.

    • This question is part of the following fields:

      • Clinical Sciences
      103.9
      Seconds
  • Question 20 - A 45-year-old female patient complains of cough and difficulty breathing. During examination, a...

    Correct

    • A 45-year-old female patient complains of cough and difficulty breathing. During examination, a mid-diastolic murmur is detected and the patient has a flushed face. What past infection could have caused these symptoms 10-20 years ago?

      Your Answer: Streptococcus pyogenes

      Explanation:

      Rheumatic Heart Disease and Mitral Stenosis

      Rheumatic heart disease is the leading cause of mitral stenosis, a condition characterized by shortness of breath and a mid-diastolic murmur in the heart. This disease is an immune response to a Group A beta-hemolytic streptococcal infection, such as streptococcus pyogenes. Acute rheumatic fever can occur within two weeks of the initial infection and can lead to a pan carditis, along with other symptoms like erythema marginatum and arthritis. If left untreated, chronic carditis may develop, which can result in mitral stenosis.

      Diphtheria is caused by Corynebacterium diptheriae, while Enterococcus faecalis is a group G streptococcal organism that can cause urinary tract and intra-abdominal infections. Neisseria meningitidis is the most common cause of bacterial meningitis, and Staphylococcus aureus can cause skin, bone, and joint infections.

    • This question is part of the following fields:

      • Clinical Sciences
      24.8
      Seconds
  • Question 21 - After a carbohydrate-rich meal, what triggers the liver to produce glycogen? ...

    Incorrect

    • After a carbohydrate-rich meal, what triggers the liver to produce glycogen?

      Your Answer:

      Correct Answer: Insulin

      Explanation:

      Glycogen Formation and Degradation

      Glycogen is a complex carbohydrate that is stored in the liver and muscles. It is formed from glucose and serves as a source of energy when glucose levels in the blood are low. Insulin, which is released by pancreatic beta cells after a carbohydrate load, promotes glycogen synthesis. This process requires several enzymes, including phosphoglucomutase, glucose-1-phosphate uridyltransferase, glycogen synthase, and branching enzyme. Conversely, when glucose is scarce, glycogen must be broken down to release glucose into the blood. The hormone glucagon stimulates glycogen degradation, which requires the enzymes glycogen phosphorylase and debranching enzyme. Defects in either the formation or degradation of glycogen can cause fasting hypoglycemia, which is a common feature of many glycogen storage disorders (GSDs).

      One example of a GSD is glycogen synthase deficiency (GSD type 0), which typically presents in childhood with symptoms of hypoglycemia after an overnight fast. Symptoms can be improved by administering glucose, and patients can be given corn starch to prevent symptoms in the morning. A liver biopsy will show very little glycogen, and the disease is inherited as an autosomal recessive trait. Overall, glycogen formation and degradation are important processes that help regulate glucose levels in the body.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 22 - With which condition is a low bone mineral density commonly linked? ...

    Incorrect

    • With which condition is a low bone mineral density commonly linked?

      Your Answer:

      Correct Answer: Rickets

      Explanation:

      Factors Affecting Bone Mineral Density

      Bone mineral density is a measure of the mineral content in bones, and low bone mineral density is a key characteristic of osteoporosis. This condition can be primary, meaning it has no known cause, or secondary, occurring as a response to another condition. In children, rickets can cause low bone mineral density. The regulation of bone mineral density is influenced by various factors, including thyroid hormone, cortisol, sex hormones, vitamin D, calcium, phosphate, and parathyroid hormone. Excessive thyroid hormones, high levels of cortisol, and low levels of sex hormones can all lead to reduced bone mineral density. Vitamin D, calcium, and phosphate are essential for bone mineralization, and insufficient levels of any of these molecules can impair this process. High levels of parathyroid hormone can also reduce bone mineralization. Paget’s disease can cause accelerated bone turnover, leading to apparent increases in bone mineral density. Healthy obese individuals typically have normal or high bone mineral density due to weight-bearing activity, while being underweight is considered a risk factor for osteoporosis.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 23 - A 10-year-old boy comes to the clinic complaining of an itchy right ear...

    Incorrect

    • A 10-year-old boy comes to the clinic complaining of an itchy right ear that has been bothering him for the past five days. During the examination, he winces in pain when the outer ear is touched. Can you identify which part of the ear is considered the outer ear?

      Your Answer:

      Correct Answer: Pinna

      Explanation:

      Earache: Types and Anatomy of the Ear

      Earache can be categorized into two types: otitis media and otitis externa. Otitis media refers to the inflammation of the middle ear, while otitis externa is the inflammation of the outer ear and/or canal. Pain on touch or gentle pulling of the outer ear is commonly associated with otitis externa.

      The outer ear is composed of the visible part of the ear, called the pinna, and the external auditory meatus near the tragus. The external auditory meatus extends from the pinna around 26 mm to the tympanic membrane. On the other hand, the middle ear reaches from the tympanic membrane to the oval window of the cochlea. This space contains three ossicles, namely the malleus, incus, and stapes, which transmit sound waves to the inner ear.

      The inner ear is made up of the cochlea, which is responsible for hearing, and the vestibular apparatus, which helps maintain balance. The vestibular apparatus consists of three semicircular canals and the vestibule.

      the anatomy of the ear and the different types of earache can help in identifying and treating ear problems. It is important to seek medical attention if experiencing ear pain or discomfort.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 24 - What function does lipoprotein lipase serve? ...

    Incorrect

    • What function does lipoprotein lipase serve?

      Your Answer:

      Correct Answer: To split triglycerides into fatty acids and glycerol

      Explanation:

      Lipoprotein Lipase and its Role in Lipid Metabolism

      Lipoprotein lipase (LPL) is a crucial enzyme that plays a significant role in lipid metabolism. It is found on various cells, including adipocytes, capillary endothelial cells, muscle cells, and cardiac cells. LPL is responsible for breaking down triglycerides into fatty acids and glycerol, which can then be utilized by the body’s cells for energy or stored for later use.

      The form of LPL found on muscle cells can remove triglycerides even at low concentrations in the blood, while the form found on adipocytes only allows for uptake when triglyceride levels are high. This ensures that triglycerides are primarily used as a fuel source and only stored in adipocytes when levels are abundant.

      Insulin plays a crucial role in regulating LPL secretion from adipocytes and promoting the storage of triglycerides as fat. This has clinical implications, as individuals with new-onset type 1 diabetes, who cease insulin production due to pancreatic damage, often experience weight loss. In contrast, individuals with established type 2 diabetes, who produce excessive amounts of insulin, are more likely to store excess calories as fat.

      In summary, lipoprotein lipase is a vital enzyme in lipid metabolism, and its regulation by insulin has significant clinical implications. the role of LPL in the body can help inform strategies for managing weight and metabolic disorders.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 25 - Which statement about the internal jugular vein and its relations is correct? ...

    Incorrect

    • Which statement about the internal jugular vein and its relations is correct?

      Your Answer:

      Correct Answer: Lies lateral to the common carotid artery

      Explanation:

      The Path of the Internal Jugular Vein

      The internal jugular vein begins at the jugular foramen and is initially located behind the carotid artery. As it descends in the carotid sheath, it moves to the side of the internal and common carotid arteries. Eventually, it passes in front of the subclavian artery and joins with the subclavian vein to form the brachiocephalic vein. The left and right brachiocephalic veins then come together to create the superior vena cava. At the point where the internal jugular vein meets the subclavian vein, it receives a lymphatic trunk. The external jugular vein, on the other hand, drains into the subclavian vein.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 26 - What antenatal biomarker is linked to the inability to form vertebral arches? ...

    Incorrect

    • What antenatal biomarker is linked to the inability to form vertebral arches?

      Your Answer:

      Correct Answer: Raised maternal serum alpha-feto protein (AFP)

      Explanation:

      Vertebral Arch Development and Neural Tube Defects

      The vertebral arches are formed from the paravertebral somites and grow posteriorly to encase the dorsal aspect of the spinal cord. Failure of development or fusion of the vertebral arches can lead to neural tube defects, which range from anencephaly to meningomyelocele and myelocele. These defects are associated with a significantly raised maternal serum alpha-feto protein and can be detected on antenatal ultrasound scans.

      Biomarkers for Down Syndrome Risk Stratification

      Several biomarkers are used in the risk-stratification screening for Down syndrome. These tests, performed on maternal serum, include PAPP-A, beta-HCG, AFP, uE3, and inhibin-A. Increased risk for Down syndrome occurs when PAPP-A and AFP are reduced, beta-HCG and inhibin-A are raised, and uE3 is reduced. These tests are used in combination with nuchal fold thickness to provide risk stratification for trisomy 21. Mothers of high-risk fetuses are offered diagnostic testing, such as amniocentesis or chorionic villus sampling.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 27 - After TLR activation on macrophages, which cytokine is secreted that enhances leukocyte adhesion...

    Incorrect

    • After TLR activation on macrophages, which cytokine is secreted that enhances leukocyte adhesion and increases endothelial permeability?

      Your Answer:

      Correct Answer: TNF-alpha

      Explanation:

      Toll-like Receptors and Cytokine Secretion by Macrophages

      Toll-like receptors are a type of pattern-recognition receptor that enables granulocytes to detect general pathogenic molecules. When activated on macrophages, Toll-like receptors trigger the secretion of various cytokines. These cytokines include IL-1, which causes fever by acting on the hypothalamus, IL-6, which stimulates the liver to release acute phase proteins, IL-8, which attracts neutrophils, and TNF-alpha, which promotes Th1-type responses from CD4+ T cells, attracts macrophages, and increases endothelial permeability.

      TGF-beta is another cytokine that is slightly different from the others. It is released by T regulatory cells and has the ability to reduce lymphocyte activity while promoting fibrosis. Overall, the activation of Toll-like receptors and subsequent cytokine secretion by macrophages play a crucial role in the immune response against pathogens.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 28 - In response to cigarette smoke, does the respiratory epithelium undergo metaplasia and if...

    Incorrect

    • In response to cigarette smoke, does the respiratory epithelium undergo metaplasia and if so, what type of epithelial cell does it form?

      Your Answer:

      Correct Answer: Stratified squamous

      Explanation:

      Epithelial Tissue and its Metaplasia

      Epithelial tissue is a type of tissue that lines the surfaces of organs and structures in the body. Respiratory epithelium, which is made up of pseudostratified, ciliated columnar cells, can undergo a process called metaplasia. This is when the tissue transforms into a different type of tissue. In the case of respiratory epithelium, it can transform into stratified squamous epithelium. This transformation occurs when the cilia on the columnar cells are lost, and the cells become squamous in shape.

      This transformation can be problematic, as the squamous cells can become dysplastic and lead to the development of squamous cell carcinoma in the lungs. Small cell carcinoma is another type of cancer that affects epithelial tissue, but its exact origin is not clear.

      Different types of epithelial tissue can be found in various parts of the body. Simple columnar epithelium, for example, is commonly found in the stomach. Simple cuboidal epithelium lines the reproductive organs, such as the ovaries and testes. Small cell epithelium lines the large and small intestines, while transitional epithelium can be found in the bladder.

      the different types of epithelial tissue and their potential for metaplasia can help in the diagnosis and treatment of various diseases and conditions.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 29 - A study investigating the effectiveness of D-dimer testing in detecting DVT analyzed the...

    Incorrect

    • A study investigating the effectiveness of D-dimer testing in detecting DVT analyzed the medical records of 800 patients. To be eligible for the study, D-dimer had to be measured and DVT must have been confirmed by ultrasound.
      Out of the 800 patients, 720 had positive D-dimers and 80 had negative D-dimers.
      What is the sensitivity of D-dimer measurement in identifying DVT?

      Your Answer:

      Correct Answer: 95%

      Explanation:

      Sensitivity in Medical Testing

      Medical testing involves the use of various diagnostic tools to identify the presence or absence of a disease. One important aspect of medical testing is sensitivity, which refers to the proportion of individuals with the disease who are correctly identified by the test. For instance, if 950 out of 1000 people with deep vein thrombosis (DVT) are correctly identified as having the condition, the sensitivity of the test is 95%.

      Highly sensitive tests are particularly useful for ruling out diseases. This means that if the test is negative, it is unlikely that the person has the disease. To remember this, you can use the mnemonic spin and snout, which stands for specificity for ruling in (spin) and sensitivity for ruling out (snout).

      In addition to sensitivity, medical testing also involves positive predictive value and negative predictive value. Positive predictive value refers to the odds of having the disease if the test is positive, while negative predictive value refers to the odds of not having the disease if the test is negative. these values can help healthcare professionals make informed decisions about patient care.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 30 - A 68-year-old woman is recuperating from a hip replacement surgery. She is experiencing...

    Incorrect

    • A 68-year-old woman is recuperating from a hip replacement surgery. She is experiencing localized discomfort and is worried about the buildup of chromium. What is the primary function of chromium in the human body?

      Your Answer:

      Correct Answer: Regulation of glucose homeostasis

      Explanation:

      Chromium and Cobalt Accumulation in Hip Prostheses and Their Effects on the Body

      Chromium and cobalt can build up around faulty metal-on-metal hip prostheses, leading to potential health concerns. While chromium is considered safe at normal levels in the human diet, isolated cases of chromium deficiency are rare. Chromium plays various roles in the body, including regulating blood sugar levels, lipid metabolism, enhancing protein synthesis, and potentially enhancing RNA synthesis. However, many individuals following Western-style diets may not consume enough chromium, leading to subtle symptoms such as dyslipidemia and impaired glucose tolerance.

      Toxicity due to chromium is uncommon, but local irritation from metal-on-metal hip prostheses can cause the development of cysts rich in chromium, known as pseudotumors. The exact mechanism behind these pathological changes is not yet fully understood. Overall, while chromium is an essential micronutrient, its accumulation in hip prostheses can lead to potential health concerns.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Clinical Sciences (2/20) 10%
Passmed