00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 55-year-old male presents to the emergency department with a high fever and...

    Correct

    • A 55-year-old male presents to the emergency department with a high fever and fatigue. He does not have any history to offer. On examination, he is noted to have splinter haemorrhages and conjunctival pallor. His observations show him to be pyrexial at 39°C. A pansystolic murmur is audible throughout the praecordium, and an echocardiogram reveals vegetations. He is diagnosed with infective endocarditis and initiated on a triple antibiotic therapy of gentamicin, vancomycin and amoxicillin. The following U&E results are noted at admission:

      Na+ 140 mmol/L (135 - 145)
      K+ 4.0 mmol/L (3.5 - 5.0)
      Bicarbonate 25 mmol/L (22 - 29)
      Urea 4.0 mmol/L (2.0 - 7.0)
      Creatinine 75 µmol/L (55 - 120)

      However, following three days of inpatient treatment, the patient becomes anuric. A repeat set of U&Es reveal the following:

      Na+ 145 mmol/L (135 - 145)
      K+ 5.0 mmol/L (3.5 - 5.0)
      Bicarbonate 25 mmol/L (22 - 29)
      Urea 12.0 mmol/L (2.0 - 7.0)
      Creatinine 150 µmol/L (55 - 120)

      What is the likely mechanism of gentamicin causing this patient’s kidney injury?

      Your Answer: Renal cell apoptosis

      Explanation:

      AKI can be attributed to gentamicin due to its ability to induce apoptosis in renal cells. Therefore, patients who are prescribed gentamicin should undergo frequent monitoring of their renal function and drug concentration levels. While there are other potential causes of acute kidney injury, none of them are linked to aminoglycoside antibiotics.

      Understanding the Difference between Acute Tubular Necrosis and Prerenal Uraemia

      Acute kidney injury can be caused by various factors, including prerenal uraemia and acute tubular necrosis. It is important to differentiate between the two to determine the appropriate treatment. Prerenal uraemia occurs when the kidneys hold on to sodium to preserve volume, leading to decreased blood flow to the kidneys. On the other hand, acute tubular necrosis is caused by damage to the kidney tubules, which can be due to various factors such as toxins, infections, or ischemia.

      To differentiate between the two, several factors can be considered. In prerenal uraemia, the urine sodium level is typically less than 20 mmol/L, while in acute tubular necrosis, it is usually greater than 40 mmol/L. The urine osmolality is also higher in prerenal uraemia, typically above 500 mOsm/kg, while in acute tubular necrosis, it is usually below 350 mOsm/kg. The fractional sodium excretion is less than 1% in prerenal uraemia, while it is greater than 1% in acute tubular necrosis. Additionally, the response to fluid challenge is typically good in prerenal uraemia, while it is poor in acute tubular necrosis.

      Other factors that can help differentiate between the two include the serum urea:creatinine ratio, fractional urea excretion, urine:plasma osmolality, urine:plasma urea, specific gravity, and urine sediment. By considering these factors, healthcare professionals can accurately diagnose and treat acute kidney injury.

    • This question is part of the following fields:

      • Renal System
      70.9
      Seconds
  • Question 2 - A 26-year-old male visits his doctor complaining of fever and coryzal symptoms. He...

    Correct

    • A 26-year-old male visits his doctor complaining of fever and coryzal symptoms. He has no significant medical history and is not sexually active.

      During the physical examination, the doctor notes a soft, slightly tender abdomen with no guarding. The patient's temperature is 38.2 ºC.

      To investigate further, the doctor orders a complete blood count, urea and electrolytes, and C-reactive protein. Additionally, a mid-stream urine sample is sent for microscopy, culture, and sensitivity.

      What might be observed in the urine on microscopy?

      Your Answer: Hyaline casts

      Explanation:

      During fever, exercise, or use of loop diuretics, it is normal to observe hyaline casts in urine. Nephritic syndrome is associated with red cell casts, while gout is characterized by needle-shaped crystals. Acute tubular necrosis is indicated by brown granular casts, and pseudogout is identified by rhomboid-shaped crystals.

      Different Types of Urinary Casts and Their Significance

      Urine contains various types of urinary casts that can provide important information about the underlying condition of the patient. Hyaline casts, for instance, are composed of Tamm-Horsfall protein that is secreted by the distal convoluted tubule. These casts are commonly seen in normal urine, after exercise, during fever, or with loop diuretics. On the other hand, brown granular casts in urine are indicative of acute tubular necrosis.

      In prerenal uraemia, the urinary sediment appears ‘bland’, which means that there are no significant abnormalities in the urine. Lastly, red cell casts are associated with nephritic syndrome, which is a condition characterized by inflammation of the glomeruli in the kidneys. By analyzing the type of urinary casts present in the urine, healthcare professionals can diagnose and manage various kidney diseases and disorders. Proper identification and interpretation of urinary casts can help in the early detection and treatment of kidney problems.

    • This question is part of the following fields:

      • Renal System
      65.1
      Seconds
  • Question 3 - A patient in his 60s is recovering on the ward following a kidney...

    Incorrect

    • A patient in his 60s is recovering on the ward following a kidney transplant. Six days after the operation he still requires dialysis, however he is not in any pain and the graft was a very good HLA match from a deceased donor. His renal function test results are shown below.

      Hb 93 g/L
      Plts. 232 x 109
      Na+ 151 mmol/l
      K+ 5.7 mmol/l
      Urea 7.9 mmol/l
      eGFR 27 mL/min/1.73m2

      What could be the probable reason for his abnormal renal function tests?

      Your Answer: Hyperacute graft rejection

      Correct Answer: Delayed graft function

      Explanation:

      Delayed graft function (DGF) is a common form of acute renal failure that can occur following a kidney transplant. In this case, delayed graft function is the most likely explanation for the patient’s symptoms. It is not uncommon for patients to require continued dialysis after a transplant, especially if the donor was deceased. However, if the need for dialysis persists beyond 7 days, further investigations may be necessary. Other potential causes, such as Addison’s disease or hyper-acute graft rejection, are less likely based on the patient’s history and the characteristics of the transplant.

      Complications Following Renal Transplant

      Renal transplantation is a common procedure, but it is not without its complications. The most common technical complications are related to the ureteric anastomosis, and the warm ischaemic time is also important as graft survival is directly related to this. Long warm ischaemic times increase the risk of acute tubular necrosis, which can occur in all types of renal transplantation. Organ rejection is also a possibility at any phase following the transplantation process.

      There are three types of organ rejection: hyperacute, acute, and chronic. Hyperacute rejection occurs immediately due to the presence of preformed antibodies, such as ABO incompatibility. Acute rejection occurs during the first six months and is usually T cell mediated, with tissue infiltrates and vascular lesions. Chronic rejection occurs after the first six months and is characterized by vascular changes, with myointimal proliferation leading to organ ischemia.

      In addition to immunological complications, there are also technical complications that can arise following renal transplant. These include renal artery thrombosis, renal artery stenosis, renal vein thrombosis, urine leaks, and lymphocele. Each of these complications presents with specific symptoms and requires different treatments, ranging from immediate surgery to angioplasty or drainage techniques.

      Overall, while renal transplantation can be a life-saving procedure, it is important to be aware of the potential complications and to monitor patients closely for any signs of rejection or technical issues.

    • This question is part of the following fields:

      • Renal System
      34.9
      Seconds
  • Question 4 - A 73-year-old man visits the urology clinic due to an elevated PSA level....

    Incorrect

    • A 73-year-old man visits the urology clinic due to an elevated PSA level. Despite undergoing a biopsy, there are no indications of cancer or benign prostatic hypertrophy.

      The patient has a medical history of diabetes mellitus, hypertension, scrotal varicocele, renal calculi, and acute urine retention.

      Out of his existing medical conditions, which one is the probable culprit for his increased PSA level?

      Your Answer: Renal calculi

      Correct Answer: Urine retention

      Explanation:

      Urinary retention is a common cause of a raised PSA reading, as it can lead to bladder enlargement. Other conditions such as diabetes mellitus, hypertension, and renal calculi are not direct causes of elevated PSA levels.

      Understanding PSA Testing for Prostate Cancer

      Prostate specific antigen (PSA) is an enzyme produced by the prostate gland that has become an important marker for prostate cancer. However, there is still much debate about its usefulness as a screening tool. The NHS Prostate Cancer Risk Management Programme (PCRMP) has published guidelines on how to handle requests for PSA testing in asymptomatic men. While a recent European trial showed a reduction in prostate cancer deaths, there is also a high risk of over-diagnosis and over-treatment. As a result, the National Screening Committee has decided not to introduce a prostate cancer screening programme yet, but rather allow men to make an informed choice.

      PSA levels may be raised by various factors, including benign prostatic hyperplasia, prostatitis, ejaculation, vigorous exercise, urinary retention, and instrumentation of the urinary tract. However, PSA levels are not always a reliable indicator of prostate cancer. For example, around 20% of men with prostate cancer have a normal PSA level, while around 33% of men with a PSA level of 4-10 ng/ml will be found to have prostate cancer. To add greater meaning to a PSA level, age-adjusted upper limits and monitoring changes in PSA level over time (PSA velocity or PSA doubling time) are used. The PCRMP recommends age-adjusted upper limits for PSA levels, with a limit of 3.0 ng/ml for men aged 50-59 years, 4.0 ng/ml for men aged 60-69 years, and 5.0 ng/ml for men over 70 years old.

    • This question is part of the following fields:

      • Renal System
      34.2
      Seconds
  • Question 5 - Which is least likely to cause hyperuricaemia? ...

    Incorrect

    • Which is least likely to cause hyperuricaemia?

      Your Answer: Severe psoriasis

      Correct Answer: Amiodarone

      Explanation:

      The drugs that cause hyperuricaemia due to reduced urate excretion can be remembered using the mnemonic Can’t leap, which stands for Ciclosporin, Alcohol, Nicotinic acid, Thiazides, Loop diuretics, Ethambutol, Aspirin, and Pyrazinamide. Additionally, decreased tubular secretion of urate can occur in patients with acidosis, such as those with diabetic ketoacidosis, ethanol or salicylate intoxication, or starvation ketosis, as the organic acids that accumulate in these conditions compete with urate for tubular secretion.

      Understanding Hyperuricaemia

      Hyperuricaemia is a condition characterized by elevated levels of uric acid in the blood. This can be caused by an increase in cell turnover or a decrease in the excretion of uric acid by the kidneys. While some individuals with hyperuricaemia may not experience any symptoms, it can be associated with other health conditions such as hyperlipidaemia, hypertension, and the metabolic syndrome.

      There are several factors that can contribute to the development of hyperuricaemia. Increased synthesis of uric acid can occur in conditions such as Lesch-Nyhan disease, myeloproliferative disorders, and with a diet rich in purines. On the other hand, decreased excretion of uric acid can be caused by drugs like low-dose aspirin, diuretics, and pyrazinamide, as well as pre-eclampsia, alcohol consumption, renal failure, and lead exposure.

      It is important to understand the underlying causes of hyperuricaemia in order to properly manage and treat the condition. Regular monitoring of uric acid levels and addressing any contributing factors can help prevent complications such as gout and kidney stones.

    • This question is part of the following fields:

      • Renal System
      16.9
      Seconds
  • Question 6 - A 75-year-old woman is admitted for a laparoscopic cholecystectomy. As part of her...

    Incorrect

    • A 75-year-old woman is admitted for a laparoscopic cholecystectomy. As part of her pre-operative evaluation, it is discovered that she is taking furosemide to manage her hypertension. What percentage of the sodium filtered at the glomerulus will be eliminated?

      Your Answer: Between 3 and 5%

      Correct Answer: Up to 25%

      Explanation:

      Loop diuretics cause significant increases in sodium excretion by acting on both the medullary and cortical regions of the thick ascending limb of the loop of Henle. This leads to a reduction in the medullary osmolal gradient and an increase in the excretion of free water, along with sodium loss. Unlike thiazide diuretics, which do not affect urine concentration and are more likely to cause hyponatremia, loop diuretics result in the loss of both sodium and water.

      Diuretic drugs are classified into three major categories based on the location where they inhibit sodium reabsorption. Loop diuretics act on the thick ascending loop of Henle, thiazide diuretics on the distal tubule and connecting segment, and potassium sparing diuretics on the aldosterone-sensitive principal cells in the cortical collecting tubule. Sodium is reabsorbed in the kidney through Na+/K+ ATPase pumps located on the basolateral membrane, which return reabsorbed sodium to the circulation and maintain low intracellular sodium levels. This ensures a constant concentration gradient.

      The physiological effects of commonly used diuretics vary based on their site of action. furosemide, a loop diuretic, inhibits the Na+/K+/2Cl- carrier in the ascending limb of the loop of Henle and can result in up to 25% of filtered sodium being excreted. Thiazide diuretics, which act on the distal tubule and connecting segment, inhibit the Na+Cl- carrier and typically result in between 3 and 5% of filtered sodium being excreted. Finally, spironolactone, a potassium sparing diuretic, inhibits the Na+/K+ ATPase pump in the cortical collecting tubule and typically results in between 1 and 2% of filtered sodium being excreted.

    • This question is part of the following fields:

      • Renal System
      24.9
      Seconds
  • Question 7 - A 5-year-old boy presents with symptoms of right sided loin pain, lethargy and...

    Incorrect

    • A 5-year-old boy presents with symptoms of right sided loin pain, lethargy and haematuria. On examination he is pyrexial and has a large mass in the right upper quadrant. What is the most probable underlying diagnosis?

      Your Answer: Renal cortical adenoma

      Correct Answer: Nephroblastoma

      Explanation:

      Based on the symptoms presented, it is highly probable that the child has nephroblastoma, while perinephric abscess is an unlikely diagnosis. Even if an abscess were to develop, it would most likely be contained within Gerota’s fascia initially, making anterior extension improbable.

      Nephroblastoma: A Childhood Cancer

      Nephroblastoma, also known as Wilms tumours, is a type of childhood cancer that typically occurs in the first four years of life. The most common symptom is the presence of a mass, often accompanied by haematuria (blood in urine). In some cases, pyrexia (fever) may also occur in about 50% of patients. Unfortunately, nephroblastomas tend to metastasize early, usually to the lungs.

      The primary treatment for nephroblastoma is nephrectomy, which involves the surgical removal of the affected kidney. The prognosis for younger children is generally better, with those under one year of age having an overall 5-year survival rate of 80%. It is important to seek medical attention promptly if any of the symptoms associated with nephroblastoma are present, as early detection and treatment can greatly improve the chances of a positive outcome.

    • This question is part of the following fields:

      • Renal System
      28
      Seconds
  • Question 8 - A 65-year-old man is having a radical cystectomy for bladder carcinoma. Significant venous...

    Incorrect

    • A 65-year-old man is having a radical cystectomy for bladder carcinoma. Significant venous bleeding occurs during the surgery. What is the main location for venous drainage from the bladder?

      Your Answer: Common iliac vein

      Correct Answer: Vesicoprostatic venous plexus

      Explanation:

      The urinary bladder is surrounded by a complex network of veins that drain into the internal iliac vein. During cystectomy, the vesicoprostatic plexus can be a significant source of venous bleeding.

      Bladder Anatomy and Innervation

      The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.

    • This question is part of the following fields:

      • Renal System
      30
      Seconds
  • Question 9 - A 58-year-old man is having a radical nephrectomy performed through a posterior approach....

    Incorrect

    • A 58-year-old man is having a radical nephrectomy performed through a posterior approach. What is the structure that is most likely to be encountered during the surgical procedure?

      Your Answer: 8th rib

      Correct Answer: 12th rib

      Explanation:

      During a posterior approach, the kidneys may come across the 11th and 12th ribs which are located at the back. It is important to note that a potential complication of this surgery is the occurrence of a pneumothorax.

      Renal Anatomy: Understanding the Structure and Relations of the Kidneys

      The kidneys are two bean-shaped organs located in a deep gutter alongside the vertebral bodies. They measure about 11cm long, 5cm wide, and 3 cm thick, with the left kidney usually positioned slightly higher than the right. The upper pole of both kidneys approximates with the 11th rib, while the lower border is usually alongside L3. The kidneys are surrounded by an outer cortex and an inner medulla, which contains pyramidal structures that terminate at the renal pelvis into the ureter. The renal sinus lies within the kidney and contains branches of the renal artery, tributaries of the renal vein, major and minor calyces, and fat.

      The anatomical relations of the kidneys vary depending on the side. The right kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, and transversus abdominis, while the left kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, transversus abdominis, stomach, pancreas, spleen, and distal part of the small intestine. Each kidney and suprarenal gland is enclosed within a common layer of investing fascia, derived from the transversalis fascia, which is divided into anterior and posterior layers (Gerotas fascia).

      At the renal hilum, the renal vein lies most anteriorly, followed by the renal artery (an end artery), and the ureter lies most posteriorly. Understanding the structure and relations of the kidneys is crucial in diagnosing and treating renal diseases and disorders.

    • This question is part of the following fields:

      • Renal System
      13
      Seconds
  • Question 10 - A 5-year-old boy comes to his family doctor with a purple rash on...

    Correct

    • A 5-year-old boy comes to his family doctor with a purple rash on his buttocks and behind his knees. His parents have observed that his urine has been slightly pink for the past few days. The boy had recently recuperated from a mild cold. The doctor suspects that he may have an IgA-mediated small vessel vasculitis.

      What is the suspected diagnosis of this condition?

      Your Answer: Henoch-Schonlein purpura

      Explanation:

      The correct answer is Henoch-Schonlein purpura, which is a type of small vessel vasculitis mediated by IgA. It typically affects children who have recently had a viral infection and is characterized by a purplish rash on the buttocks and flexor surfaces of the upper and lower limbs. Treatment is mainly supportive.

      Granulomatosis with polyangitis is not the correct answer as it is a different type of vasculitis that is not IgA-mediated. It usually presents with a triad of upper respiratory symptoms (such as sinusitis and epistaxis), lower respiratory tract symptoms (like cough and haemoptysis), and glomerulonephritis (which causes haematuria and proteinuria leading to frothy urine).

      Kawasaki disease is another type of vasculitis that affects children, but it is a medium vessel vasculitis triggered by unknown mechanisms. The classic presentation includes prolonged fever (lasting over 5 days) and redness of the eyes, hands, and feet. There may also be mucosal involvement with the characteristic strawberry tongue.

      Minimal change disease is the most common cause of nephrotic syndrome in young children. It can also be associated with a preceding viral infection, but it does not present with a purplish rash. Instead, it is characterized by facial swelling and frothy urine.

      Understanding Henoch-Schonlein Purpura

      Henoch-Schonlein purpura (HSP) is a type of small vessel vasculitis that is mediated by IgA. It is often associated with IgA nephropathy, also known as Berger’s disease. HSP is commonly observed in children following an infection.

      The condition is characterized by a palpable purpuric rash, which is accompanied by localized oedema over the buttocks and extensor surfaces of the arms and legs. Other symptoms include abdominal pain and polyarthritis. In some cases, patients may also experience haematuria and renal failure, which are indicative of IgA nephropathy.

      Treatment for HSP typically involves analgesia for arthralgia. While there is inconsistent evidence for the use of steroids and immunosuppressants, supportive care is generally recommended for patients with nephropathy. The prognosis for HSP is usually excellent, particularly in children without renal involvement. However, it is important to monitor blood pressure and urinalysis to detect any signs of progressive renal involvement. Approximately one-third of patients may experience a relapse.

      In summary, Henoch-Schonlein purpura is a self-limiting condition that is often seen in children following an infection. While the symptoms can be uncomfortable, the prognosis is generally good. However, it is important to monitor patients for any signs of renal involvement and provide appropriate supportive care.

    • This question is part of the following fields:

      • Renal System
      28.3
      Seconds
  • Question 11 - A 55-year-old man with a medical history of ischaemic heart disease, gout, and...

    Incorrect

    • A 55-year-old man with a medical history of ischaemic heart disease, gout, and diabetes presents with sudden and severe pain in his left renal angle that radiates to his groin. Upon undergoing an urgent CT KUB, it is confirmed that he has nephrolithiasis with hydronephrosis. As a result, he is admitted under the urology team for immediate intervention due to acute kidney injury.

      What is the most common material that makes up these calculi in the general population?

      Your Answer: Calcium citrate

      Correct Answer: Calcium oxalate

      Explanation:

      Renal stones can be classified into different types based on their composition. Calcium oxalate stones are the most common, accounting for 85% of all calculi. These stones are formed due to hypercalciuria, hyperoxaluria, and hypocitraturia. They are radio-opaque and may also bind with uric acid stones. Cystine stones are rare and occur due to an inherited recessive disorder of transmembrane cystine transport. Uric acid stones are formed due to purine metabolism and may precipitate when urinary pH is low. Calcium phosphate stones are associated with renal tubular acidosis and high urinary pH. Struvite stones are formed from magnesium, ammonium, and phosphate and are associated with chronic infections. The pH of urine can help determine the type of stone present, with calcium phosphate stones forming in normal to alkaline urine, uric acid stones forming in acidic urine, and struvate stones forming in alkaline urine. Cystine stones form in normal urine pH.

    • This question is part of the following fields:

      • Renal System
      31.1
      Seconds
  • Question 12 - A 5-year-old boy presents with pain in the abdomen and painless blood in...

    Incorrect

    • A 5-year-old boy presents with pain in the abdomen and painless blood in the urine. Upon examination, a lump is felt in the left flank. What is the probable diagnosis?

      Your Answer: Ulcerative colitis

      Correct Answer: Wilms' tumour

      Explanation:

      A Wilms’ tumour is the most prevalent type of renal carcinoma in children, making renal cell carcinoma an incorrect diagnosis. Ulcerative colitis is rare in children of this age, and the other potential diagnoses are unlikely based on the child’s symptoms.

      Wilms’ Tumour: A Common Childhood Malignancy

      Wilms’ tumour, also known as nephroblastoma, is a prevalent type of cancer in children, with a median age of diagnosis at 3 years old. It is often associated with Beckwith-Wiedemann syndrome, hemihypertrophy, and a loss-of-function mutation in the WT1 gene on chromosome 11. The most common presenting feature is an abdominal mass, which is usually painless, but other symptoms such as haematuria, flank pain, anorexia, and fever may also occur. In 95% of cases, the tumour is unilateral, and metastases are found in 20% of patients, most commonly in the lungs.

      If a child presents with an unexplained enlarged abdominal mass, it is crucial to arrange a paediatric review within 48 hours to rule out Wilms’ tumour. The management of this cancer typically involves nephrectomy, chemotherapy, and radiotherapy if the disease is advanced. Fortunately, the prognosis for Wilms’ tumour is good, with an 80% cure rate.

      Histologically, Wilms’ tumour is characterized by epithelial tubules, areas of necrosis, immature glomerular structures, stroma with spindle cells, and small cell blastomatous tissues resembling the metanephric blastema. Overall, early detection and prompt treatment are essential for a successful outcome in children with Wilms’ tumour.

    • This question is part of the following fields:

      • Renal System
      17.8
      Seconds
  • Question 13 - A 54-year-old man visits the clinic after his spouse was diagnosed with hypertension...

    Incorrect

    • A 54-year-old man visits the clinic after his spouse was diagnosed with hypertension and advised him to get his blood pressure checked. He has no symptoms. Upon measurement, his blood pressure is 155/92 mmHg. To further evaluate, a 24-hour blood pressure monitoring is scheduled. During the consultation, you discuss the physiology of blood pressure and mention the significance of the renin-angiotensin-aldosterone system in maintaining blood pressure homeostasis. Can you identify the primary site of aldosterone action in the kidney?

      Your Answer: Bowman's capsule and ascending limb of the loop of Henle of the nephron

      Correct Answer: Distal convoluted tubule and collecting duct of the nephron

      Explanation:

      Aldosterone functions in the distal convoluted tubule and collecting ducts of the nephron. Spironolactone is a diuretic that preserves potassium levels by blocking aldosterone receptors. The loop of Henle and Bowman’s capsule are located closer to the beginning of the nephron. Prostaglandins regulate the afferent arteriole of the glomerulus, causing vasodilation. NSAIDs can lead to renal failure by inhibiting prostaglandin production. The vasa recta are straight capillaries that run parallel to the loop of Henle in the kidney. To confirm a diagnosis of hypertension, NICE recommends a 24-hour ambulatory blood pressure reading to account for the potential increase in blood pressure in clinical settings.

      Aldosterone is a hormone that is primarily produced by the adrenal cortex in the zona glomerulosa. Its main function is to stimulate the reabsorption of sodium from the distal tubules, which results in the excretion of potassium. It is regulated by various factors such as angiotensin II, potassium, and ACTH, which increase its secretion. However, when there is an overproduction of aldosterone, it can lead to primary hyperaldosteronism, which is a common cause of secondary hypertension. This condition can be caused by an adrenal adenoma, which is also known as Conn’s syndrome. It is important to note that spironolactone, an aldosterone antagonist, can cause hyperkalemia.

    • This question is part of the following fields:

      • Renal System
      43.1
      Seconds
  • Question 14 - A patient in his 50s becomes dehydrated, resulting in increased water absorption in...

    Incorrect

    • A patient in his 50s becomes dehydrated, resulting in increased water absorption in the collecting duct. If the concentration of his urine is measured, it would be around 1200mOsm/L. At which point in the nephron would a comparable osmolarity be observed?

      Your Answer: Thin ascending Loop of Henle

      Correct Answer: The tip of the Loop of Henle

      Explanation:

      The Loop of Henle creates the highest osmolarity in the nephron, while the proximal tubule absorbs most of the water. The tip of the papilla has the greatest osmolarity, which is also the maximum osmolarity that urine can attain after water absorption in the collecting ducts. The medulla of the kidney facilitates water reabsorption in the collecting ducts due to the osmotic gradient formed by the Loops of Henle.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      39.9
      Seconds
  • Question 15 - A 33-year-old woman is scheduled for a kidney biopsy following a renal ultrasound...

    Incorrect

    • A 33-year-old woman is scheduled for a kidney biopsy following a renal ultrasound that revealed several large cysts on her left kidney. The medical team has informed her of the potential risks associated with the procedure, such as the possibility of puncturing the primary blood vessels that supply the kidney - the renal artery and vein. At what anatomical level do these vessels enter the left kidney, considering their location?

      Your Answer: L2

      Correct Answer: L1

      Explanation:

      The correct level for the hilum of the left kidney is L1, which is also where the renal artery, vein, and ureter enter the kidney. T12 is not the correct level as it is the location of the adrenal glands or upper pole of the kidney. L2 is also not correct as it refers to the hilum of the right kidney, which is slightly lower. L4 is not the correct level as both renal arteries come off above this level from the abdominal aorta.

      Renal Anatomy: Understanding the Structure and Relations of the Kidneys

      The kidneys are two bean-shaped organs located in a deep gutter alongside the vertebral bodies. They measure about 11cm long, 5cm wide, and 3 cm thick, with the left kidney usually positioned slightly higher than the right. The upper pole of both kidneys approximates with the 11th rib, while the lower border is usually alongside L3. The kidneys are surrounded by an outer cortex and an inner medulla, which contains pyramidal structures that terminate at the renal pelvis into the ureter. The renal sinus lies within the kidney and contains branches of the renal artery, tributaries of the renal vein, major and minor calyces, and fat.

      The anatomical relations of the kidneys vary depending on the side. The right kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, and transversus abdominis, while the left kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, transversus abdominis, stomach, pancreas, spleen, and distal part of the small intestine. Each kidney and suprarenal gland is enclosed within a common layer of investing fascia, derived from the transversalis fascia, which is divided into anterior and posterior layers (Gerotas fascia).

      At the renal hilum, the renal vein lies most anteriorly, followed by the renal artery (an end artery), and the ureter lies most posteriorly. Understanding the structure and relations of the kidneys is crucial in diagnosing and treating renal diseases and disorders.

    • This question is part of the following fields:

      • Renal System
      28.8
      Seconds
  • Question 16 - A 16-year-old boy is being evaluated for weight loss and increased thirst. During...

    Correct

    • A 16-year-old boy is being evaluated for weight loss and increased thirst. During a urine dipstick test, one of the parameters showed a +++ result. In which part of the nephron does the resorption of this solute primarily occur?

      Your Answer: Proximal convoluted tubule

      Explanation:

      Glucose is primarily reabsorbed in the proximal convoluted tubule of the nephron. In individuals with type 1 diabetes, the level of circulating glucose exceeds the nephron’s capacity for reabsorption, resulting in glycosuria or glucose in the urine. The collecting duct system mainly reabsorbs water under the control of hormones such as ADH. The descending limb of the loop of Henle is primarily permeable to water, while the distal convoluted tubule mainly absorbs ions and water through active transport. The thick ascending limb of the loop of Henle is the main site of resorption for sodium, potassium, and chloride ions, creating a hypotonic filtrate.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      28.8
      Seconds
  • Question 17 - A 70-year-old man visits the endocrinology clinic complaining of muscle cramps, headaches, and...

    Incorrect

    • A 70-year-old man visits the endocrinology clinic complaining of muscle cramps, headaches, and lethargy. During the clinic visit, his vital signs are heart rate 80/min, respiratory rate 18/min, blood pressure 150/100 mmHg, temperature 36.5ºC, and saturations 99% on air. Recent blood tests reveal:

      - Na+ 147 mmol/L (135 - 145)
      - K+ 3.2 mmol/L (3.5 - 5.0)
      - Bicarbonate 28 mmol/L (22 - 29)
      - Urea 6.0 mmol/L (2.0 - 7.0)
      - Creatinine 95 µmol/L (55 - 120)

      An adrenal mass is detected on his abdominal CT scan. Can you identify where the hormone responsible for his symptoms is produced?

      Your Answer: Zona reticularis

      Correct Answer: Zona glomerulosa

      Explanation:

      The correct answer is the zona glomerulosa. This patient is experiencing symptoms of hyperaldosteronism, which is likely caused by an adenoma in the zona glomerulosa, as indicated by the mass seen on CT scan (also known as Conn’s syndrome). The adenoma stimulates the production of aldosterone, leading to hypertension and hypokalemia.

      The adrenal medulla produces catecholamines, such as adrenaline and noradrenaline.

      The juxtaglomerular apparatus is located in the kidney and produces renin in response to decreased renal perfusion.

      The zona fasciculata is the middle layer of the adrenal cortex and is responsible for producing glucocorticoids, such as cortisol.

      The zona reticularis is the innermost layer of the adrenal cortex and produces androgens, such as dehydroepiandrosterone (DHEA).

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      77.2
      Seconds
  • Question 18 - At which of the following locations is the highest amount of water absorbed?...

    Correct

    • At which of the following locations is the highest amount of water absorbed?

      Your Answer: Jejunum

      Explanation:

      The small bowel, specifically the jejunum and ileum, is the primary location for water absorption in the gastrointestinal tract. While the colon does play a role in water absorption, its contribution is minor in comparison. However, if there is a significant removal of the small bowel, the importance of the colon in water absorption may become more significant.

      Water Absorption in the Human Body

      Water absorption in the human body is a crucial process that occurs in the small bowel and colon. On average, a person ingests up to 2000ml of liquid orally within a 24-hour period. Additionally, gastrointestinal secretions contribute to a further 8000ml of fluid entering the small bowel. The process of intestinal water absorption is passive and is dependent on the solute load. In the jejunum, the active absorption of glucose and amino acids creates a concentration gradient that facilitates the flow of water across the membrane. On the other hand, in the ileum, most water is absorbed through facilitated diffusion, which involves the movement of water molecules with sodium ions.

      The colon also plays a significant role in water absorption, with approximately 150ml of water entering it daily. However, the colon can adapt and increase this amount following resection. Overall, water absorption is a complex process that involves various mechanisms and is essential for maintaining proper hydration levels in the body.

    • This question is part of the following fields:

      • Renal System
      16.4
      Seconds
  • Question 19 - During your placement on a gastro ward, a patient in their late 60s...

    Correct

    • During your placement on a gastro ward, a patient in their late 60s develops excessive diarrhea. Can you identify the location in the gastrointestinal tract where most of the water is absorbed?

      Your Answer: Jejunum

      Explanation:

      The absorption of water in the gastrointestinal tract is facilitated by the absorption of ions across cell membranes. The majority of water is absorbed in the small intestine, particularly in the jejunum.

      Water Absorption in the Human Body

      Water absorption in the human body is a crucial process that occurs in the small bowel and colon. On average, a person ingests up to 2000ml of liquid orally within a 24-hour period. Additionally, gastrointestinal secretions contribute to a further 8000ml of fluid entering the small bowel. The process of intestinal water absorption is passive and is dependent on the solute load. In the jejunum, the active absorption of glucose and amino acids creates a concentration gradient that facilitates the flow of water across the membrane. On the other hand, in the ileum, most water is absorbed through facilitated diffusion, which involves the movement of water molecules with sodium ions.

      The colon also plays a significant role in water absorption, with approximately 150ml of water entering it daily. However, the colon can adapt and increase this amount following resection. Overall, water absorption is a complex process that involves various mechanisms and is essential for maintaining proper hydration levels in the body.

    • This question is part of the following fields:

      • Renal System
      11.5
      Seconds
  • Question 20 - During an on-call shift, you are reviewing the blood results of a 72-year-old...

    Incorrect

    • During an on-call shift, you are reviewing the blood results of a 72-year-old man. He was admitted with abdominal pain and has a working diagnosis of acute cholecystitis. He is currently on intravenous cefuroxime and metronidazole, awaiting further surgical review. His blood results are as follows:

      Hb 115 g/L : (115 - 160)
      Platelets 320* 109/L (150 - 400)
      WBC 18.2* 109/L (4.0 - 11.0)
      Na+ 136 mmol/L (135 - 145)
      K+ 6.9 mmol/L (3.5 - 5.0)
      Urea 14.8 mmol/L (2.0 - 7.0)
      Creatinine 225 µmol/L (55 - 120)
      CRP 118 mg/L (< 5)

      Bilirubin 15 µmol/L (3 - 17)
      ALP 410 u/L (30 - 100)
      ALT 32 u/L (3 - 40)
      Albumin 39 g/L (35 - 50)

      You initiate treatment with intravenous calcium gluconate, salbutamol nebulisers, and furosemide. On discussion with the renal team, they recommend additional treatment with calcium resonium.

      What is the mechanism of action of calcium resonium?

      Your Answer: It acts on the NKCC2 channel to increase potassium excretion

      Correct Answer: It increases potassium excretion by preventing enteral absorption

      Explanation:

      The correct answer is that calcium resonium increases potassium excretion by preventing enteral absorption. This is achieved through cation ion exchange, where the resin exchanges potassium for Ca++ in the body. The onset of action is usually 2-12 hours when taken orally and longer when administered rectally. It is important to note that calcium resonium does not act on the Na+/K+-ATPase pump, which is the mechanism of action for drugs like digoxin. Additionally, it does not shift potassium from the extracellular to the intracellular compartment, which is the mechanism of action for salbutamol nebulisers. Lastly, calcium resonium does not stabilise the cardiac membrane, which is the action of calcium gluconate.

      Managing Hyperkalaemia: A Step-by-Step Guide

      Hyperkalaemia is a serious condition that can lead to life-threatening arrhythmias if left untreated. To manage hyperkalaemia, it is important to address any underlying factors that may be contributing to the condition, such as acute kidney injury, and to stop any aggravating drugs, such as ACE inhibitors. Treatment can be categorised based on the severity of the hyperkalaemia, which is classified as mild, moderate, or severe based on the patient’s potassium levels.

      ECG changes are also important in determining the appropriate management for hyperkalaemia. Peaked or ‘tall-tented’ T waves, loss of P waves, broad QRS complexes, and a sinusoidal wave pattern are all associated with hyperkalaemia and should be evaluated in all patients with new hyperkalaemia.

      The principles of treatment modalities for hyperkalaemia include stabilising the cardiac membrane, shifting potassium from extracellular to intracellular fluid compartments, and removing potassium from the body. IV calcium gluconate is used to stabilise the myocardium, while insulin/dextrose infusion and nebulised salbutamol can be used to shift potassium from the extracellular to intracellular fluid compartments. Calcium resonium, loop diuretics, and dialysis can be used to remove potassium from the body.

      In practical terms, all patients with severe hyperkalaemia or ECG changes should receive emergency treatment, including IV calcium gluconate to stabilise the myocardium and insulin/dextrose infusion to shift potassium from the extracellular to intracellular fluid compartments. Other treatments, such as nebulised salbutamol, may also be used to temporarily lower serum potassium levels. Further management may involve stopping exacerbating drugs, treating any underlying causes, and lowering total body potassium through the use of calcium resonium, loop diuretics, or dialysis.

    • This question is part of the following fields:

      • Renal System
      67.5
      Seconds
  • Question 21 - An 80-year-old man visits his GP for a follow up appointment after starting...

    Incorrect

    • An 80-year-old man visits his GP for a follow up appointment after starting trimethoprim for a urinary tract infection 7 days ago. He mentions that his urinary symptoms have gone but that he has been feeling generally tired and weak for the last 4 weeks (before the urinary tract infection). He asks if this could be related to the new medication he started 5 weeks ago. Upon reviewing his medical history, you see that he was started on ramipril 5 weeks ago. He also mentions that his osteoarthritic pain has been quite bad recently, which caused him to miss his most recent medication review appointment, but he has been taking more paracetamol and ibuprofen than usual. Due to the combination of medication and his vague symptoms, you decide to perform an ECG. The ECG shows tall, tented T waves, prolonged PR interval, and bradycardia. What is the underlying cause of these ECG changes?

      Your Answer: Hyponatraemia

      Correct Answer: Hyperkalaemia

      Explanation:

      The patient is most likely suffering from hyperkalaemia, as evidenced by their medication history which includes an increase in potassium-raising drugs such as trimethoprim, ramipril, and ibuprofen. The ECG results also show classic signs of hyperkalaemia, including tall tented T waves, bradycardia, and a prolonged PR interval.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      60.2
      Seconds
  • Question 22 - In a patient with an ectopic kidney, where would you expect to find...

    Correct

    • In a patient with an ectopic kidney, where would you expect to find the adrenal gland situated?

      Your Answer: In its usual position

      Explanation:

      If the kidney is present, the adrenal gland will typically develop in its normal location instead of being absent.

      The adrenal cortex, which secretes steroids, is derived from the mesoderm of the posterior abdominal wall and is first detected at 6 weeks’ gestation. The fetal cortex predominates throughout fetal life, with adult-type zona glomerulosa and fasciculata detected but making up only a small proportion of the gland. The adrenal medulla, which is responsible for producing adrenaline, is of ectodermal origin and arises from neural crest cells that migrate to the medial aspect of the developing cortex. The fetal adrenal gland is relatively large, but it rapidly regresses at birth, disappearing almost completely by age 1 year. By age 4-5 years, the permanent adult-type adrenal cortex has fully developed.

      Anatomic anomalies of the adrenal gland may occur, such as agenesis of an adrenal gland being usually associated with ipsilateral agenesis of the kidney. Fused adrenal glands, whereby the two glands join across the midline posterior to the aorta, are also associated with a fused kidney. Adrenal hypoplasia can occur in two forms: hypoplasia or absence of the fetal cortex with a poorly formed medulla, or disorganized fetal cortex and medulla with no permanent cortex present. Adrenal heterotopia describes a normal adrenal gland in an abnormal location, such as within the renal or hepatic capsules. Accessory adrenal tissue, also known as adrenal rests, is most commonly located in the broad ligament or spermatic cord but can be found anywhere within the abdomen, and even intracranial adrenal rests have been reported.

    • This question is part of the following fields:

      • Renal System
      13.7
      Seconds
  • Question 23 - A 60-year-old man complains of excessive urination and increased thirst. You want to...

    Correct

    • A 60-year-old man complains of excessive urination and increased thirst. You want to examine for diabetes insipidus.

      What is the most suitable test to conduct?

      Your Answer: Water deprivation test

      Explanation:

      The water deprivation test is a diagnostic tool for investigating diabetes insipidus. The Short Synacthen test is utilized to diagnose Addison’s disease. Cranial diabetes insipidus can be treated with Desmopressin, while nephrogenic diabetes insipidus can be treated with thiazide diuretics.

      Diabetes insipidus is a medical condition that can be caused by either a decreased secretion of antidiuretic hormone (ADH) from the pituitary gland (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be caused by various factors such as head injury, pituitary surgery, and infiltrative diseases like sarcoidosis. On the other hand, nephrogenic DI can be caused by genetic factors, electrolyte imbalances, and certain medications like lithium and demeclocycline. The common symptoms of DI are excessive urination and thirst. Diagnosis is made through a water deprivation test and checking the osmolality of the urine. Treatment options include thiazides and a low salt/protein diet for nephrogenic DI, while central DI can be treated with desmopressin.

    • This question is part of the following fields:

      • Renal System
      18.2
      Seconds
  • Question 24 - An 82-year-old woman with a history of chronic kidney disease presents to the...

    Correct

    • An 82-year-old woman with a history of chronic kidney disease presents to the general practice with a painful left foot. The pain is sharp in nature and is felt mostly towards the posterior of the sole of the foot. The pain is most severe when the patient takes her first few steps after getting out of bed in the morning. There is no history of trauma. You diagnose plantar fasciitis. The usual treatment of plantar fasciitis is with NSAIDs. However, NSAIDs are contraindicated in severe renal disease. What is the effect of NSAIDs on the glomerular filtration pressure?

      Your Answer: Vasoconstriction of the afferent arteriole

      Explanation:

      The correct answer is vasoconstriction of the afferent arteriole, as explained in the following notes.

      ACE inhibitors and ARBs cause vasodilation of the efferent arteriole, which reduces glomerular filtration pressure. This effect is particularly significant in individuals with renal artery stenosis, as their kidneys receive limited perfusion, including the glomeruli.

      In a healthy individual, the afferent arteriole remains dilated, while the efferent arteriole remains constricted to maintain a fine balance of glomerular pressure. Vasodilation of the afferent arteriole or vasoconstriction of the efferent arteriole would both increase glomerular filtration pressure.

      The patient in the given question is experiencing symptoms that suggest plantar fasciitis, a common condition caused by inflammation of the plantar fascia in the foot.

      The Impact of NSAIDs on Kidney Function

      NSAIDs are commonly used anti-inflammatory drugs that work by inhibiting the enzymes COX-1 and COX-2, which are responsible for the synthesis of prostanoids such as prostaglandins and thromboxanes. In the kidneys, prostaglandins play a crucial role in vasodilating the afferent arterioles of the glomeruli, allowing for increased blood flow and a higher glomerular filtration rate (GFR).

      However, when NSAIDs inhibit the COX enzymes, the levels of prostaglandins decrease, leading to a reduction in afferent arteriole vasodilation and subsequently, a decrease in renal perfusion and GFR. This can have negative consequences for kidney function, particularly in individuals with pre-existing kidney disease or those taking high doses of NSAIDs for prolonged periods of time.

      It is important for healthcare providers to consider the potential impact of NSAIDs on kidney function and to monitor patients accordingly, especially those at higher risk for kidney damage. Alternative treatments or lower doses of NSAIDs may be recommended to minimize the risk of kidney injury.

    • This question is part of the following fields:

      • Renal System
      69.3
      Seconds
  • Question 25 - A 65-year-old male presents with multiple episodes of haematuria. He has a history...

    Incorrect

    • A 65-year-old male presents with multiple episodes of haematuria. He has a history of COPD due to prolonged smoking. What could be the probable root cause?

      Your Answer: Renal adenocarcinoma

      Correct Answer: Transitional cell carcinoma of the bladder

      Explanation:

      TCC is the most common subtype of renal cancer and is strongly associated with smoking. Renal adenocarcinoma may also cause similar symptoms but is less likely.

      Bladder cancer is a common urological cancer that primarily affects males aged 50-80 years old. Smoking and exposure to hydrocarbons increase the risk of developing the disease. Chronic bladder inflammation from Schistosomiasis infection is also a common cause of squamous cell carcinomas in countries where the disease is endemic. Benign tumors of the bladder, such as inverted urothelial papilloma and nephrogenic adenoma, are rare. The most common bladder malignancies are urothelial (transitional cell) carcinoma, squamous cell carcinoma, and adenocarcinoma. Urothelial carcinomas may be solitary or multifocal, with papillary growth patterns having a better prognosis. The remaining tumors may be of higher grade and prone to local invasion, resulting in a worse prognosis.

      The TNM staging system is used to describe the extent of bladder cancer. Most patients present with painless, macroscopic hematuria, and a cystoscopy and biopsies or TURBT are used to provide a histological diagnosis and information on depth of invasion. Pelvic MRI and CT scanning are used to determine locoregional spread, and PET CT may be used to investigate nodes of uncertain significance. Treatment options include TURBT, intravesical chemotherapy, surgery (radical cystectomy and ileal conduit), and radical radiotherapy. The prognosis varies depending on the stage of the cancer, with T1 having a 90% survival rate and any T, N1-N2 having a 30% survival rate.

    • This question is part of the following fields:

      • Renal System
      19.5
      Seconds
  • Question 26 - A 94-year-old male is admitted to the emergency department after being found on...

    Correct

    • A 94-year-old male is admitted to the emergency department after being found on the floor for several hours due to a fall. What blood test is crucial to perform in a patient who has been immobile for an extended period of time?

      Your Answer: Creatine kinase

      Explanation:

      When an elderly person remains in bed for an extended period, the pressure on their muscles can cause muscle death and rhabdomyolysis. This leads to the breakdown of skeletal muscles and the release of muscle contents into the bloodstream, resulting in hyperkalemia. This is a medical emergency that can cause cardiac arrest.

      Therefore, it is crucial to test for creatine kinase in patients who have been bedridden for a long time to diagnose rhabdomyolysis. Creatine kinase levels will be elevated and may reach several tens of thousands.

      To investigate the cause of the fall, other blood tests may be necessary, such as calcium to check for dehydration, sodium to detect hyponatremia, and troponin to determine if there was a cardiac ischemic event.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      15.9
      Seconds
  • Question 27 - A 35-year-old man comes to you with complaints of pedal oedema, frothy urine...

    Incorrect

    • A 35-year-old man comes to you with complaints of pedal oedema, frothy urine and decreased urine output. He has no significant medical history. You suspect that the patient's nephrotic syndrome may be caused by a common form of idiopathic glomerulonephritis that affects adults.

      What would be the most helpful initial test to confirm this particular diagnosis?

      Your Answer: Renal function

      Correct Answer: Anti-phospholipase A2 antibodies

      Explanation:

      Idiopathic membranous glomerulonephritis is believed to be associated with anti-phospholipase A2 antibodies. This condition is a common cause of nephrotic syndrome in adults, and since the patient has no other relevant medical history, an idiopathic cause is likely. To confirm the diagnosis, measuring anti-phospholipase A2 levels is recommended.

      Testing for ASOT would suggest post-streptococcal glomerulonephritis (PSGN), which is more common in children and typically presents with an acute nephritic picture rather than nephrotic syndrome. Therefore, this is not the most likely diagnosis.

      While dyslipidaemia is commonly found in nephrotic syndrome, confirming it would not help confirm the suspected diagnosis of idiopathic membranous glomerulonephritis.

      Although acute kidney injury (AKI) can occur in individuals with nephrotic syndrome, assessing renal function is unlikely to help diagnose membranous glomerulonephritis.

      While assessing the protein content in a sample may be useful in diagnosing nephrotic syndrome, it is not specific to membranous glomerulonephritis.

      Membranous glomerulonephritis is the most common type of glomerulonephritis in adults and is the third leading cause of end-stage renal failure. It typically presents with proteinuria or nephrotic syndrome. A renal biopsy will show a thickened basement membrane with subepithelial electron dense deposits, creating a spike and dome appearance. The condition can be caused by various factors, including infections, malignancy, drugs, autoimmune diseases, and idiopathic reasons.

      Management of membranous glomerulonephritis involves the use of ACE inhibitors or ARBs to reduce proteinuria and improve prognosis. Immunosuppression may be necessary for patients with severe or progressive disease, but many patients spontaneously improve. Corticosteroids alone are not effective, and a combination of corticosteroid and another agent such as cyclophosphamide is often used. Anticoagulation may be considered for high-risk patients.

      The prognosis for membranous glomerulonephritis follows the rule of thirds: one-third of patients experience spontaneous remission, one-third remain proteinuric, and one-third develop end-stage renal failure. Good prognostic factors include female sex, young age at presentation, and asymptomatic proteinuria of a modest degree at the time of diagnosis.

    • This question is part of the following fields:

      • Renal System
      25.3
      Seconds
  • Question 28 - A patient with compromised kidney function is given a new medication that is...

    Incorrect

    • A patient with compromised kidney function is given a new medication that is typically eliminated through renal excretion. What factors might impact the excretion of the medication?

      Your Answer: Tubular secretion/reabsorption

      Correct Answer: Diffusivity across the basement membrane and tubular secretion/reabsorption

      Explanation:

      The clearance of a substance in the kidneys is influenced by two important factors: diffusivity across the basement membrane and tubular secretion/reabsorption. Additionally, the Loop of Henle plays a crucial role in generating a significant osmotic gradient, while the primary function of the collecting duct is to facilitate the reabsorption of water.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      22.2
      Seconds
  • Question 29 - A 75-year-old male ex-smoker presents to a urologist with a complaint of painless...

    Incorrect

    • A 75-year-old male ex-smoker presents to a urologist with a complaint of painless haematuria that has been ongoing for 3 weeks. He has experienced a weight loss of 5 kg over the past two months. During an urgent cystoscopy, a suspicious mass is discovered and subsequently biopsied. The histology confirms a transitional cell carcinoma of the bladder. A CT scan of the abdomen and pelvis reveals multiple enlarged lymph nodes. Which lymph node is the most probable site of metastasis?

      Your Answer: Deep inguinal lymph nodes

      Correct Answer: Internal and external iliac lymph nodes

      Explanation:

      The external and internal iliac nodes are the main recipients of lymphatic drainage from the bladder, while the testes and ovaries are primarily drained by the para-aortic lymph nodes.

      Bladder Anatomy and Innervation

      The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.

    • This question is part of the following fields:

      • Renal System
      28.8
      Seconds
  • Question 30 - A 6-year-old girl visits her pediatrician with significant swelling around her eyes. Her...

    Incorrect

    • A 6-year-old girl visits her pediatrician with significant swelling around her eyes. Her mother reports that the patient has been passing foamy urine lately.

      Upon conducting a urine dipstick test, the pediatrician observes proteinuria +++ with no other anomalies.

      The pediatrician suspects that the patient may have minimal change disease leading to nephrotic syndrome.

      What is the association of this condition with light microscopy?

      Your Answer: Basement membrane thickening

      Correct Answer: Normal glomerular architecture

      Explanation:

      In minimal change disease, light microscopy typically shows no abnormalities.

      Minimal change disease is a condition that typically presents as nephrotic syndrome, with children accounting for 75% of cases and adults accounting for 25%. While most cases are idiopathic, a cause can be found in around 10-20% of cases, such as drugs like NSAIDs and rifampicin, Hodgkin’s lymphoma, thymoma, or infectious mononucleosis. The pathophysiology of the disease involves T-cell and cytokine-mediated damage to the glomerular basement membrane, resulting in polyanion loss and a reduction of electrostatic charge, which increases glomerular permeability to serum albumin.

      The features of minimal change disease include nephrotic syndrome, normotension (hypertension is rare), and highly selective proteinuria, where only intermediate-sized proteins like albumin and transferrin leak through the glomerulus. Renal biopsy shows normal glomeruli on light microscopy, while electron microscopy shows fusion of podocytes and effacement of foot processes.

      Management of minimal change disease involves oral corticosteroids, which are effective in 80% of cases. For steroid-resistant cases, cyclophosphamide is the next step. The prognosis for the disease is generally good, although relapse is common. Roughly one-third of patients have just one episode, one-third have infrequent relapses, and one-third have frequent relapses that stop before adulthood.

    • This question is part of the following fields:

      • Renal System
      34
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Renal System (10/30) 33%
Passmed