00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 60-year-old male visits his doctor complaining of a lump on the side...

    Incorrect

    • A 60-year-old male visits his doctor complaining of a lump on the side of his neck. He reports feeling exhausted and experiencing night sweats. Following a needle core biopsy, the patient is diagnosed with follicular lymphoma. Which chromosomes are linked to this condition through translocation?

      Your Answer: 9 and 22

      Correct Answer: 14 and 18

      Explanation:

      The translocation of chromosomes is associated with various types of lymphoma and leukaemia. For example, the t(14;18) translocation causes follicular lymphoma by increasing BCL-2 transcription. Similarly, the t(8;14) translocation causes Burkitt lymphoma, while the t(9;22) translocation leads to the Philadelphia chromosome and chronic myeloid leukaemia. Mantle cell lymphoma is associated with the t(11;14) translocation. These translocations can help diagnose and classify these haematological malignancies.

      Genetics of Haematological Malignancies

      Haematological malignancies are cancers that affect the blood, bone marrow, and lymphatic system. These cancers are often associated with specific genetic abnormalities, such as translocations. Here are some common translocations and their associated haematological malignancies:

      – Philadelphia chromosome (t(9;22)): This translocation is present in more than 95% of patients with chronic myeloid leukaemia (CML). It results in the fusion of the Abelson proto-oncogene with the BCR gene on chromosome 22, creating the BCR-ABL gene. This gene codes for a fusion protein with excessive tyrosine kinase activity, which is a poor prognostic indicator in acute lymphoblastic leukaemia (ALL).

      – t(15;17): This translocation is seen in acute promyelocytic leukaemia (M3) and involves the fusion of the PML and RAR-alpha genes.

      – t(8;14): Burkitt’s lymphoma is associated with this translocation, which involves the translocation of the MYC oncogene to an immunoglobulin gene.

      – t(11;14): Mantle cell lymphoma is associated with the deregulation of the cyclin D1 (BCL-1) gene.

      – t(14;18): Follicular lymphoma is associated with increased BCL-2 transcription due to this translocation.

      Understanding the genetic abnormalities associated with haematological malignancies is important for diagnosis, prognosis, and treatment.

    • This question is part of the following fields:

      • Haematology And Oncology
      20.2
      Seconds
  • Question 2 - A 10-year-old girl comes to the doctor's office with purpura. She appears to...

    Incorrect

    • A 10-year-old girl comes to the doctor's office with purpura. She appears to be in good health, but her blood test reveals thrombocytopenia, lymphopenia, leukopenia, and anemia. What is the probable diagnosis?

      Your Answer: Acute myeloid leukaemia

      Correct Answer: Acute lymphoblastic leukaemia

      Explanation:

      Acute Lymphoblastic Leukaemia

      Acute lymphoblastic leukaemia (ALL) is a type of cancer that commonly affects children over the age of one. It occurs when a lymphocyte precursor, known as a ‘blast cell’, grows abnormally in the bone marrow, leading to a failure of normal blood cell production. This results in peripheral cytopenias, which can cause symptoms such as anaemia, recurrent infections, and purpura. While a raised peripheral white cell count may occur in severe or late-stage disease, it is not common.

      Compared to other types of leukaemia and lymphoma, ALL is more likely to present with bone marrow failure symptoms. Acute myeloid leukaemia, for example, is more common in the elderly and presents with a raised peripheral white cell count. Burkitt lymphoma, on the other hand, is a high-grade non-Hodgkin lymphoma that typically presents with lymphadenopathy. Chronic lymphocytic leukaemia is also more common in the elderly and presents with a peripheral lymphocytosis. Langerhans histiocytosis, a condition that affects antigen-presenting cells, is more common in young children and often affects the skin or bones. While it can cause marrow failure, it is a rare occurrence.

      In summary, ALL is a type of cancer that affects children and is caused by abnormal growth of blast cells in the bone marrow. It can cause symptoms of bone marrow failure, such as anaemia, recurrent infections, and purpura. While other types of leukaemia and lymphoma may present with different symptoms, ALL is more likely to present with bone marrow failure symptoms.

    • This question is part of the following fields:

      • Haematology And Oncology
      62.6
      Seconds
  • Question 3 - What is the lymphatic drainage of the ovaries? ...

    Incorrect

    • What is the lymphatic drainage of the ovaries?

      Your Answer: Inguinal nodes

      Correct Answer: Para-aortic nodes

      Explanation:

      The para-aortic nodes receive lymphatic drainage from the ovary through the gonadal vessels.

      Lymphatic Drainage of Female Reproductive Organs

      The lymphatic drainage of the female reproductive organs is a complex system that involves multiple nodal stations. The ovaries drain to the para-aortic lymphatics via the gonadal vessels. The uterine fundus has a lymphatic drainage that runs with the ovarian vessels and may thus drain to the para-aortic nodes. Some drainage may also pass along the round ligament to the inguinal nodes. The body of the uterus drains through lymphatics contained within the broad ligament to the iliac lymph nodes. The cervix drains into three potential nodal stations; laterally through the broad ligament to the external iliac nodes, along the lymphatics of the uterosacral fold to the presacral nodes and posterolaterally along lymphatics lying alongside the uterine vessels to the internal iliac nodes. Understanding the lymphatic drainage of the female reproductive organs is important for the diagnosis and treatment of gynecological cancers.

    • This question is part of the following fields:

      • Haematology And Oncology
      11.7
      Seconds
  • Question 4 - From which of the following cell types do giant cells typically arise?
    ...

    Correct

    • From which of the following cell types do giant cells typically arise?

      Your Answer: Macrophages

      Explanation:

      Macrophages are still the most frequent cell type that can generate giant cells, despite the possibility of other cell types doing so.

      Giant cells are masses that result from the fusion of various types of cells. Typically, these masses are composed of macrophages. It is important to note that giant cells are not the same as granulomas, although the agents that cause them may be similar. In fact, giant cells are often a reaction to foreign materials, such as suture material, and can be seen in histological sections stained with haematoxylin and eosin. Overall, giant cells are a unique phenomenon in cellular biology that can provide insight into the body’s response to foreign substances.

    • This question is part of the following fields:

      • Haematology And Oncology
      6.6
      Seconds
  • Question 5 - Sophie, a 25-year-old woman, is visiting the haematology clinic for Hodgkin's lymphoma treatment....

    Incorrect

    • Sophie, a 25-year-old woman, is visiting the haematology clinic for Hodgkin's lymphoma treatment. Despite tolerating chemotherapy well, her bone marrow has been suppressed, necessitating frequent blood transfusions. To minimize the risk of graft versus host disease (GVHD), the haematologist prescribes irradiated red cells.

      What is the purpose of using irradiated red cells in this scenario?

      Your Answer:

      Correct Answer: They have fewer active T-lymphocytes

      Explanation:

      Irradiated blood products are utilized to reduce the risk of GVHD in patients who are at risk. This is achieved by eliminating the donated immune cells within the sample, particularly the T-lymphocytes responsible for causing GVHD. When these T-lymphocytes are from a different person, they may perceive the host’s tissues as foreign and attack them, leading to damage to various body structures such as the skin, liver, and bowels. Patients with Hodgkin’s lymphoma are at a higher risk of developing GVHD due to their weakened immune system.

      Although irradiation of blood products can also eliminate pathogens and reduce the risk of infection, this is not the primary reason for its use in reducing GVHD. Irradiation does not cause a reduced immune response from the host, as GVHD is caused by an immune response from the donated lymphocytes against the host tissues.

      It is important to note that macrophages are not a significant cause of GVHD, and irradiated blood products do not have significantly fewer antibodies. Blood products still need to be matched based on blood group and other factors, as irradiation primarily damages living cells such as lymphocytes rather than antibodies and other proteins.

      CMV Negative and Irradiated Blood Products

      Blood products that are CMV negative and irradiated are used in specific situations to prevent certain complications. CMV is a virus that is transmitted through leucocytes, but as most blood products are now leucocyte depleted, CMV negative products are not often needed. However, in situations where CMV transmission is a concern, such as in granulocyte transfusions, intra-uterine transfusions, neonates up to 28 days post expected date of delivery, bone marrow/stem cell transplants, immunocompromised patients, and those with/previous Hodgkin lymphoma, CMV negative blood products are used.

      On the other hand, irradiated blood products are depleted of T-lymphocytes and are used to prevent transfusion-associated graft versus host disease (TA-GVHD) caused by engraftment of viable donor T lymphocytes. Irradiated blood products are used in situations such as granulocyte transfusions, intra-uterine transfusions, neonates up to 28 days post expected date of delivery, bone marrow/stem cell transplants, and in patients who have received chemotherapy or have congenital immunodeficiencies.

      In summary, CMV negative and irradiated blood products are used in specific situations to prevent complications related to CMV transmission and TA-GVHD. The use of these blood products is determined based on the patient’s medical history and condition.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 6 - An 80-year-old woman visits her doctor complaining of excessive vaginal bleeding. After undergoing...

    Incorrect

    • An 80-year-old woman visits her doctor complaining of excessive vaginal bleeding. After undergoing an ultrasound scan and uterine biopsy, it is revealed that she has an endometrial tumor located in the uterine fundus. Which group of nearby lymph nodes will be the primary location for lymphatic metastasis of this tumor?

      Your Answer:

      Correct Answer: Para-aortic lymph nodes

      Explanation:

      The lymphatic drainage of the uterine fundus is similar to that of the ovaries, running alongside the ovarian vessels and draining into the para-aortic lymph nodes. Therefore, option 4 is correct. Options 1, 2, and 5 are incorrect as they refer to the drainage of the cervix and uterine body, which is different from that of the uterine fundus. Option 3 is also incorrect as the external iliac lymph nodes are not involved in the drainage of the uterine fundus.

      Lymphatic Drainage of Female Reproductive Organs

      The lymphatic drainage of the female reproductive organs is a complex system that involves multiple nodal stations. The ovaries drain to the para-aortic lymphatics via the gonadal vessels. The uterine fundus has a lymphatic drainage that runs with the ovarian vessels and may thus drain to the para-aortic nodes. Some drainage may also pass along the round ligament to the inguinal nodes. The body of the uterus drains through lymphatics contained within the broad ligament to the iliac lymph nodes. The cervix drains into three potential nodal stations; laterally through the broad ligament to the external iliac nodes, along the lymphatics of the uterosacral fold to the presacral nodes and posterolaterally along lymphatics lying alongside the uterine vessels to the internal iliac nodes. Understanding the lymphatic drainage of the female reproductive organs is important for the diagnosis and treatment of gynecological cancers.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 7 - Which of the following processes enables phagocytosis to occur? ...

    Incorrect

    • Which of the following processes enables phagocytosis to occur?

      Your Answer:

      Correct Answer: Opsonisation

      Explanation:

      Phagocytosis is facilitated by opsonisation, which involves coating the micro-organism with antibody, C3b, and specific acute phase proteins. This leads to an increase in phagocytic cell surface receptors on macrophages and neutrophils, which is mediated by pro-inflammatory cytokines. As a result, these cells are able to engulf the micro-organism.

      Phagocytosis: The Process of Cell Ingestion

      Phagocytosis is the process by which cells ingest foreign materials or pathogens. The first step in this process is opsonisation, where the organism is coated by an antibody. The second step is adhesion to the cell surface, followed by pseudopodial extension to form a phagocytic vacuole. Finally, lysosomes fuse with the vacuole and degrade its contents.

      Phagocytosis is an essential process for the immune system to fight off infections and diseases. It is a complex process that involves multiple steps, including opsonisation, adhesion, and pseudopodial extension. The end result is the degradation of the foreign material or pathogen by lysosomes. Understanding the process of phagocytosis is crucial for developing treatments for diseases that involve the immune system.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 8 - A 70-year-old man is undergoing investigation for small intestine cancer due to his...

    Incorrect

    • A 70-year-old man is undergoing investigation for small intestine cancer due to his history of Crohn's disease. An adenocarcinoma of his duodenum is detected through endoscopy and histology. The oncologist is now examining his previous abdominal CT scan to determine if there is any nodal involvement.

      Which group of lymph nodes could potentially be affected in this scenario?

      Your Answer:

      Correct Answer: Superior mesenteric lymph nodes

      Explanation:

      The superior mesenteric lymph nodes are responsible for draining the duodenum, which is the second section of the gastrointestinal system. This lymphatic drainage is important for staging gastrointestinal cancers, and is similar to the blood supply of the gut. While the coeliac lymph nodes drain the first part of the gastrointestinal system, the inferior mesenteric lymph nodes drain the third part, and the internal iliac lymph nodes drain the lower part of the rectum and some of the anal canal. The para-aortic lymph nodes are not involved in the drainage of the gastrointestinal system, but instead drain the genito-urinary system. It is important to understand the correct lymphatic drainage patterns for accurate cancer staging.

      Lymphatic drainage is the process by which lymphatic vessels carry lymph, a clear fluid containing white blood cells, away from tissues and organs and towards lymph nodes. The lymphatic vessels that drain the skin and follow venous drainage are called superficial lymphatic vessels, while those that drain internal organs and structures follow the arteries and are called deep lymphatic vessels. These vessels eventually lead to lymph nodes, which filter and remove harmful substances from the lymph before it is returned to the bloodstream.

      The lymphatic system is divided into two main ducts: the right lymphatic duct and the thoracic duct. The right lymphatic duct drains the right side of the head and right arm, while the thoracic duct drains everything else. Both ducts eventually drain into the venous system.

      Different areas of the body have specific primary lymph node drainage sites. For example, the superficial inguinal lymph nodes drain the anal canal below the pectinate line, perineum, skin of the thigh, penis, scrotum, and vagina. The deep inguinal lymph nodes drain the glans penis, while the para-aortic lymph nodes drain the testes, ovaries, kidney, and adrenal gland. The axillary lymph nodes drain the lateral breast and upper limb, while the internal iliac lymph nodes drain the anal canal above the pectinate line, lower part of the rectum, and pelvic structures including the cervix and inferior part of the uterus. The superior mesenteric lymph nodes drain the duodenum and jejunum, while the inferior mesenteric lymph nodes drain the descending colon, sigmoid colon, and upper part of the rectum. Finally, the coeliac lymph nodes drain the stomach.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 9 - A 25-year-old male is getting a routine check-up from his family doctor before...

    Incorrect

    • A 25-year-old male is getting a routine check-up from his family doctor before starting a new workout regimen at the gym. He has a clean medical history and does not smoke or drink. He is currently pursuing a graduate degree in political science. The doctor orders a CBC and other tests.

      The patient returns to the doctor's office a week later for the test results. The CBC shows that his platelet count is low. However, he does not have any signs of bleeding from his nose or mouth, and there are no rashes on his skin.

      The doctor suspects that this may be due to platelet in vitro agglutination.

      What could have caused this condition?

      Your Answer:

      Correct Answer: Ethylenediaminetetraacetic acid (EDTA)

      Explanation:

      EDTA is known to induce pseudothrombocytopenia, which is a condition where platelet counts are falsely reported as low due to EDTA-dependent platelet aggregation. On the other hand, sodium fluoride inhibits glycolysis and prevents enzymes from functioning, leading to the depletion of substrates like glucose during storage. While sodium citrate, sodium oxalate, and lithium heparin are all anticoagulants commonly found in vacutainers, they are not linked to thrombocytopenia.

      Causes of Thrombocytopenia

      Thrombocytopenia is a medical condition characterized by a low platelet count in the blood. The severity of thrombocytopenia can vary, with some cases being more severe than others. Severe thrombocytopenia can be caused by conditions such as immune thrombocytopenia (ITP), disseminated intravascular coagulation (DIC), thrombotic thrombocytopenic purpura (TTP), and haematological malignancy. On the other hand, moderate thrombocytopenia can be caused by heparin-induced thrombocytopenia (HIT), drug-induced factors such as quinine, diuretics, sulphonamides, aspirin, and thiazides, alcohol, liver disease, hypersplenism, viral infections such as EBV, HIV, and hepatitis, pregnancy, SLE/antiphospholipid syndrome, and vitamin B12 deficiency. It is important to note that pseudothrombocytopenia can also occur as a result of using EDTA as an anticoagulant.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 10 - A 45-year-old woman presents to her GP with a four-week history of dysphagia,...

    Incorrect

    • A 45-year-old woman presents to her GP with a four-week history of dysphagia, anorexia and weight loss. She has had a hoarse voice for several months.

      She has a 40 pack-year smoking history, starting from the age of 16 years. She drinks 30 units a week in the form of binge drinking beer over the weekend. She admits to having a very poor diet consisting mostly of fish and chips. She is noted to have a body mass index of 38kg/m².

      The GP refers her under a two-week wait for suspicion of oesophageal cancer.

      What risk factors contributed to her increased likelihood of developing this disease?

      Your Answer:

      Correct Answer: Nitrosamines

      Explanation:

      Exposure to nitrosamines is a known risk factor for the development of oesophageal and gastric cancer, particularly squamous cell carcinoma of the oesophagus. Nitrosamines are present in high levels in cigarette smoke, which is a significant source of exposure for this patient. Binge drinking of beer can also lead to high levels of nitrosamine exposure. Additionally, nitrosamines can be found in certain fried foods, such as fish and chips, as well as some cheeses.

      Aflatoxin, which is produced by Aspergillus species, is another known risk factor for cancer. Specifically, it increases the risk of developing hepatocellular carcinoma.

      Aniline dyes, which are commonly used in industrial dyeing and the rubber industry, have been linked to an increased risk of developing transitional cell carcinoma of the bladder.

      Asbestos, which was once widely used in insulation, building materials, and construction, is a well-known carcinogen that increases the risk of developing mesothelioma and bronchial cancers.

      Understanding Carcinogens and Their Link to Cancer

      Carcinogens are substances that have the potential to cause cancer. These substances can be found in various forms, including chemicals, radiation, and viruses. Aflatoxin, which is produced by Aspergillus, is a carcinogen that can cause liver cancer. Aniline dyes, on the other hand, can lead to bladder cancer, while asbestos is known to cause mesothelioma and bronchial carcinoma. Nitrosamines are another type of carcinogen that can cause oesophageal and gastric cancer, while vinyl chloride can lead to hepatic angiosarcoma.

      It is important to understand the link between carcinogens and cancer, as exposure to these substances can increase the risk of developing the disease. By identifying and avoiding potential carcinogens, individuals can take steps to reduce their risk of cancer. Additionally, researchers continue to study the effects of various substances on the body, in order to better understand the mechanisms behind cancer development and to develop new treatments and prevention strategies. With continued research and education, it is possible to reduce the impact of carcinogens on human health.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 11 - An 80-year-old male visits his doctor complaining of passing fresh red blood in...

    Incorrect

    • An 80-year-old male visits his doctor complaining of passing fresh red blood in his stool, tenesmus, and feeling lethargic for the past 2 months. During the digital rectal examination, no abnormalities are detected. However, an urgent flexible sigmoidoscopy reveals a mass in the sigmoid colon. Biopsies of the lesion confirm the presence of adenocarcinoma. In this patient, which lymph node region is most likely to be affected by metastatic spread initially?

      Your Answer:

      Correct Answer: Inferior mesenteric nodes

      Explanation:

      The sigmoid colon’s lymphatic drainage flows into the inferior mesenteric nodes. This is due to the embryological development of the vasculature supply in the hindgut region, which includes the transverse colon down to the rectum. From there, lymph eventually passes to the para-aortic nodes. The axillary nodes are not involved in this process, as they drain the upper limb and lateral breast tissue. Similarly, the internal iliac nodes drain different areas, including the inferior rectum, anal canal above the pectinate line, and pelvic viscera.

      Lymphatic drainage is the process by which lymphatic vessels carry lymph, a clear fluid containing white blood cells, away from tissues and organs and towards lymph nodes. The lymphatic vessels that drain the skin and follow venous drainage are called superficial lymphatic vessels, while those that drain internal organs and structures follow the arteries and are called deep lymphatic vessels. These vessels eventually lead to lymph nodes, which filter and remove harmful substances from the lymph before it is returned to the bloodstream.

      The lymphatic system is divided into two main ducts: the right lymphatic duct and the thoracic duct. The right lymphatic duct drains the right side of the head and right arm, while the thoracic duct drains everything else. Both ducts eventually drain into the venous system.

      Different areas of the body have specific primary lymph node drainage sites. For example, the superficial inguinal lymph nodes drain the anal canal below the pectinate line, perineum, skin of the thigh, penis, scrotum, and vagina. The deep inguinal lymph nodes drain the glans penis, while the para-aortic lymph nodes drain the testes, ovaries, kidney, and adrenal gland. The axillary lymph nodes drain the lateral breast and upper limb, while the internal iliac lymph nodes drain the anal canal above the pectinate line, lower part of the rectum, and pelvic structures including the cervix and inferior part of the uterus. The superior mesenteric lymph nodes drain the duodenum and jejunum, while the inferior mesenteric lymph nodes drain the descending colon, sigmoid colon, and upper part of the rectum. Finally, the coeliac lymph nodes drain the stomach.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 12 - A 44-year-old man was admitted to the emergency department with facial swelling and...

    Incorrect

    • A 44-year-old man was admitted to the emergency department with facial swelling and difficulty breathing. Stridor and dilated neck veins were observed on examination. A CT scan revealed a mass obstructing the superior vena cava, which was later confirmed to be non-Hodgkin lymphoma. The patient received initial chemotherapy treatment for the lymphoma.

      After five weeks, he returned to the emergency department complaining of a tingling and painful sensation in his hands and feet bilaterally. Additionally, he was observed to have a high steppage gait. What is the most likely cause of his symptoms during his second visit to the emergency department?

      Your Answer:

      Correct Answer: Vincristine

      Explanation:

      The standard chemotherapy regimen for non-Hodgkin lymphoma is R-CHOP, which includes Rituximab (in certain patients), cyclophosphamide, hydroxydaunorubicin, Oncovin (vincristine), and prednisolone. However, one of the significant side effects of vincristine is chemotherapy-induced peripheral neuropathy, which can cause tingling or numbness starting from the extremities. It can also lead to severe neuropathic pain and distal weakness, such as foot drop.

      While Rituximab can cause adverse effects such as cardiotoxicity and infections, it is not commonly associated with neurological effects. Cyclophosphamide, on the other hand, can cause chemotherapy-induced nausea and vomiting, bone marrow suppression, and haemorrhagic cystitis due to its toxicity to the bladder epithelium.

      Hydroxydaunorubicin is known to cause dilated cardiomyopathy, which can lead to heart failure and has a high mortality rate.

      Cytotoxic agents are drugs that are used to kill cancer cells. There are several types of cytotoxic agents, each with their own mechanism of action and potential adverse effects. Alkylating agents, such as cyclophosphamide, work by causing cross-linking in DNA. However, they can also cause haemorrhagic cystitis, myelosuppression, and transitional cell carcinoma. Cytotoxic antibiotics, like bleomycin and anthracyclines, degrade preformed DNA and stabilize DNA-topoisomerase II complex, respectively. However, they can also cause lung fibrosis and cardiomyopathy. Antimetabolites, such as methotrexate and fluorouracil, inhibit dihydrofolate reductase and thymidylate synthesis, respectively. However, they can also cause myelosuppression, mucositis, and liver or lung fibrosis. Drugs that act on microtubules, like vincristine and docetaxel, inhibit the formation of microtubules and prevent microtubule depolymerisation & disassembly, respectively. However, they can also cause peripheral neuropathy, myelosuppression, and paralytic ileus. Topoisomerase inhibitors, like irinotecan, inhibit topoisomerase I, which prevents relaxation of supercoiled DNA. However, they can also cause myelosuppression. Other cytotoxic drugs, such as cisplatin and hydroxyurea, cause cross-linking in DNA and inhibit ribonucleotide reductase, respectively. However, they can also cause ototoxicity, peripheral neuropathy, hypomagnesaemia, and myelosuppression.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 13 - A 25-year-old female comes to the clinic concerned about her risk of developing...

    Incorrect

    • A 25-year-old female comes to the clinic concerned about her risk of developing cancer due to her family history. Her grandfather recently passed away from lung cancer, and there are other cases of prostate, breast, and malignant melanoma in her family. She asks which type of cancer has the highest mortality rate in the UK. What is the correct answer?

      Your Answer:

      Correct Answer: Lung cancer

      Explanation:

      The leading cause of cancer deaths in the UK is lung cancer, while malignant melanoma does not rank in the top 10. Prostate cancer is the most prevalent cancer in men and the second most common cause of cancer-related deaths in men. Breast cancer is the second most common cause of cancer deaths in women.

      Cancer in the UK: Common Types and Causes of Death

      Cancer is a major health concern in the UK, with several types of cancer affecting a significant number of people. The most common types of cancer in the UK are breast, lung, colorectal, prostate, bladder, non-Hodgkin’s lymphoma, melanoma, stomach, oesophagus, and pancreas. However, when it comes to causes of death from cancer, lung cancer tops the list, followed by colorectal, breast, prostate, and pancreatic cancer. Other types of cancer that contribute to cancer-related deaths in the UK include oesophageal, stomach, bladder, non-Hodgkin’s lymphoma, and ovarian cancer. It is important to note that non-melanoma skin cancer is not included in these statistics. Despite the prevalence of cancer in the UK, there are various treatments and support available for those affected by the disease.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 14 - A 13-year-old, recently-immigrated girl from Nigeria is referred to the hospital after presenting...

    Incorrect

    • A 13-year-old, recently-immigrated girl from Nigeria is referred to the hospital after presenting to her GP with a growth of the jaw. A number of investigations are performed, including a test for the Epstein-Barr virus which comes back positive. A biopsy is taken, which demonstrates a 'starry sky' appearance.

      Based on the presented information and the probable diagnosis, which translocation is most likely involved?

      Your Answer:

      Correct Answer: T(8:14)

      Explanation:

      Understanding Burkitt’s Lymphoma

      Burkitt’s lymphoma is a type of high-grade B-cell neoplasm that can occur in two major forms. The endemic or African form typically affects the maxilla or mandible, while the sporadic form is commonly found in the abdomen, particularly in patients with HIV. The development of Burkitt’s lymphoma is strongly associated with the c-myc gene translocation, usually t(8:14), and the Epstein-Barr virus (EBV) is also implicated in its development.

      Microscopy findings of Burkitt’s lymphoma show a starry sky appearance, characterized by lymphocyte sheets interspersed with macrophages containing dead apoptotic tumor cells. Management of this condition involves chemotherapy, which can produce a rapid response but may also cause tumor lysis syndrome. To reduce the risk of this occurring, rasburicase, a recombinant version of urate oxidase, is often given before chemotherapy. Complications of tumor lysis syndrome include hyperkalemia, hyperphosphatemia, hypocalcemia, hyperuricemia, and acute renal failure.

      In summary, Burkitt’s lymphoma is a serious condition that can occur in two major forms and is associated with c-myc gene translocation and the Epstein-Barr virus. Microscopy findings show a characteristic appearance, and management involves chemotherapy with the use of rasburicase to reduce the risk of complications.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 15 - A 54-year-old man comes to the clinic complaining of fever and night sweats...

    Incorrect

    • A 54-year-old man comes to the clinic complaining of fever and night sweats that have been ongoing for several months. He reports a weight loss of 8 kg during this time and smokes half a pack of cigarettes per day. His temperature is 38 ºC, and he has splenomegaly on physical examination. No lymphadenopathy is observed. Laboratory results show a leukocyte count of 60 * 109, and a low leukocyte alkaline phosphatase level.

      What is the most likely finding in this patient?

      Your Answer:

      Correct Answer: t(9;22) translocation

      Explanation:

      Genetics of Haematological Malignancies

      Haematological malignancies are cancers that affect the blood, bone marrow, and lymphatic system. These cancers are often associated with specific genetic abnormalities, such as translocations. Here are some common translocations and their associated haematological malignancies:

      – Philadelphia chromosome (t(9;22)): This translocation is present in more than 95% of patients with chronic myeloid leukaemia (CML). It results in the fusion of the Abelson proto-oncogene with the BCR gene on chromosome 22, creating the BCR-ABL gene. This gene codes for a fusion protein with excessive tyrosine kinase activity, which is a poor prognostic indicator in acute lymphoblastic leukaemia (ALL).

      – t(15;17): This translocation is seen in acute promyelocytic leukaemia (M3) and involves the fusion of the PML and RAR-alpha genes.

      – t(8;14): Burkitt’s lymphoma is associated with this translocation, which involves the translocation of the MYC oncogene to an immunoglobulin gene.

      – t(11;14): Mantle cell lymphoma is associated with the deregulation of the cyclin D1 (BCL-1) gene.

      – t(14;18): Follicular lymphoma is associated with increased BCL-2 transcription due to this translocation.

      Understanding the genetic abnormalities associated with haematological malignancies is important for diagnosis, prognosis, and treatment.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 16 - A 44-year-old woman visits her general practitioner complaining of post-coital bleeding, dyspareunia, and...

    Incorrect

    • A 44-year-old woman visits her general practitioner complaining of post-coital bleeding, dyspareunia, and weight loss that have persisted for 2 months. She has never undergone cervical screening and is not taking any medication. During speculum examination, the doctor observes cervix ulceration and urgently refers her to a gynaecologist. Subsequent investigations reveal that she has cervical cancer.

      In this patient, which lymph node region is most likely to be affected by metastatic spread initially?

      Your Answer:

      Correct Answer: Internal iliac nodes

      Explanation:

      The cervix is drained by the internal iliac lymph nodes. These nodes are responsible for draining the pelvic structures, including the cervix and lower part of the uterus, making them the most likely location for lymphatic spread. They also drain the lower part of the rectum and the anal canal above the pectinate line. The deep inguinal nodes are not involved in this process as they receive drainage from the lower extremity and perineum. The inferior mesenteric nodes primarily drain the hindgut structures, while the para-aortic nodes drain the ovaries, which develop in the abdomen and move down the posterior abdominal wall during fetal development.

      Lymphatic drainage is the process by which lymphatic vessels carry lymph, a clear fluid containing white blood cells, away from tissues and organs and towards lymph nodes. The lymphatic vessels that drain the skin and follow venous drainage are called superficial lymphatic vessels, while those that drain internal organs and structures follow the arteries and are called deep lymphatic vessels. These vessels eventually lead to lymph nodes, which filter and remove harmful substances from the lymph before it is returned to the bloodstream.

      The lymphatic system is divided into two main ducts: the right lymphatic duct and the thoracic duct. The right lymphatic duct drains the right side of the head and right arm, while the thoracic duct drains everything else. Both ducts eventually drain into the venous system.

      Different areas of the body have specific primary lymph node drainage sites. For example, the superficial inguinal lymph nodes drain the anal canal below the pectinate line, perineum, skin of the thigh, penis, scrotum, and vagina. The deep inguinal lymph nodes drain the glans penis, while the para-aortic lymph nodes drain the testes, ovaries, kidney, and adrenal gland. The axillary lymph nodes drain the lateral breast and upper limb, while the internal iliac lymph nodes drain the anal canal above the pectinate line, lower part of the rectum, and pelvic structures including the cervix and inferior part of the uterus. The superior mesenteric lymph nodes drain the duodenum and jejunum, while the inferior mesenteric lymph nodes drain the descending colon, sigmoid colon, and upper part of the rectum. Finally, the coeliac lymph nodes drain the stomach.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 17 - A 49-year-old female presents to her family physician with complaints of post-coital pain....

    Incorrect

    • A 49-year-old female presents to her family physician with complaints of post-coital pain. She initially attributed it to her age, but lately, she has been experiencing a constant dull pain in her pelvis. Additionally, she reports having a foul-smelling discharge from her vagina. Her medical and surgical history is unremarkable, but she mentions having multiple sexual partners during her teenage years and twenties. She has been smoking ten cigarettes a day for the past decade and does not consume alcohol. During the examination, the doctor discovers an irregular mass on her cervix. What is the primary mechanism behind the most significant risk factor for this patient's condition?

      Your Answer:

      Correct Answer: Human papillomavirus 16 and 18 produces oncoproteins which causes inhibition of the tumor suppressor genes causing cervical carcinoma

      Explanation:

      The patient is displaying typical signs and symptoms of cervical carcinoma, with a constant dull pelvic pain indicating possible invasion of pelvic structures and nerves. The strongest risk factor for this patient is having had multiple sexual partners at a young age, which increases the likelihood of being infected with the human papillomavirus.

      1: Multiple sexual partners are the strongest risk factor for cervical carcinoma due to the increased chance of contracting the human papillomavirus, specifically the 16 and 18 viral strains that inhibit the tumor suppressor genes p53 and RB, triggering carcinogenesis.
      2: While cigarette smoking can have an oncogenic effect, it is not the primary risk factor in this case.
      3: HIV is a risk factor for cervical carcinoma, but it is less common than the human papillomavirus.
      4: The human papillomavirus is the primary risk factor, but it does not activate oncogenes. Instead, it inhibits tumor suppressor genes.
      5: Age alone is not a risk factor for cervical carcinoma. However, an older person who has been exposed to the human papillomavirus may have a higher risk due to the longer exposure time for the virus to induce carcinogenesis via the inhibition of tumor suppressor genes.

      HPV Infection and Cervical Cancer

      Human papillomavirus (HPV) infection is the primary risk factor for cervical cancer, with subtypes 16, 18, and 33 being the most carcinogenic. Other common subtypes, such as 6 and 11, are associated with genital warts but are not carcinogenic. When endocervical cells become infected with HPV, they may undergo changes that lead to the development of koilocytes. These cells have distinct characteristics, including an enlarged nucleus, irregular nuclear membrane contour, hyperchromasia (darker staining of the nucleus), and a perinuclear halo. These changes are important diagnostic markers for cervical cancer and can be detected through Pap smears or other screening methods. Early detection and treatment of HPV infection and cervical cancer can greatly improve outcomes and reduce the risk of complications.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 18 - A 28-year-old male is undergoing chemotherapy for testicular cancer and has been prescribed...

    Incorrect

    • A 28-year-old male is undergoing chemotherapy for testicular cancer and has been prescribed cisplatin. What is the mechanism of action of this medication?

      Your Answer:

      Correct Answer: Causes cross-linking of DNA

      Explanation:

      Cisplatin causes DNA cross-linking, leading to apoptosis in cancer cells. It is commonly used in chemotherapy for various cancers. Methotrexate inhibits dihydrofolate reductase, which is not the mechanism of cisplatin. Hydroxyurea inhibits ribonucleotide reductase and is used to treat different diseases. Docetaxel prevents microtubule depolymerization and is used for breast cancer treatment. Fluorouracil blocks thymidylate synthase during S phase, leading to cell cycle arrest and apoptosis, but it is not the mechanism of cisplatin.

      Cytotoxic agents are drugs that are used to kill cancer cells. There are several types of cytotoxic agents, each with their own mechanism of action and potential adverse effects. Alkylating agents, such as cyclophosphamide, work by causing cross-linking in DNA. However, they can also cause haemorrhagic cystitis, myelosuppression, and transitional cell carcinoma. Cytotoxic antibiotics, like bleomycin and anthracyclines, degrade preformed DNA and stabilize DNA-topoisomerase II complex, respectively. However, they can also cause lung fibrosis and cardiomyopathy. Antimetabolites, such as methotrexate and fluorouracil, inhibit dihydrofolate reductase and thymidylate synthesis, respectively. However, they can also cause myelosuppression, mucositis, and liver or lung fibrosis. Drugs that act on microtubules, like vincristine and docetaxel, inhibit the formation of microtubules and prevent microtubule depolymerisation & disassembly, respectively. However, they can also cause peripheral neuropathy, myelosuppression, and paralytic ileus. Topoisomerase inhibitors, like irinotecan, inhibit topoisomerase I, which prevents relaxation of supercoiled DNA. However, they can also cause myelosuppression. Other cytotoxic drugs, such as cisplatin and hydroxyurea, cause cross-linking in DNA and inhibit ribonucleotide reductase, respectively. However, they can also cause ototoxicity, peripheral neuropathy, hypomagnesaemia, and myelosuppression.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 19 - A 27-year-old woman visits the maternity assessment unit two weeks after giving birth...

    Incorrect

    • A 27-year-old woman visits the maternity assessment unit two weeks after giving birth with complaints of perineal pain and discharge. She had a forceps-assisted vaginal delivery at 40+5 weeks and suffered a type 3a perineal tear. Her primary concern is that the wound may be infected as it appears red and inflamed when she tries to examine it with a mirror.

      During the examination, the perineal wound shows signs of purulent discharge, erythematous surrounding skin, and a buried suture. Given the complexity of the repair, the consultant orders a CT scan to rule out a pelvic abscess. The CT report reveals a small fluid collection in the perineal wound and lymphadenopathy.

      Based on this information, where is the likely site of lymphatic drainage?

      Your Answer:

      Correct Answer: Superficial inguinal lymph nodes

      Explanation:

      The patient’s CT scan showed lymphadenopathy in the superficial inguinal lymph nodes, which is expected as the infection is located in the perineum. The deep inguinal lymph nodes, which drain the glans penis and clitoris, are not the primary site for perineal drainage. The medial group of external iliac lymph nodes drain the urinary bladder, membranous aspect of the urethra, cervix, and upper part of the vagina, while the internal iliac lymph nodes drain the anal canal above the pectinate line, the lower part of the rectum, the cervix, and the inferior uterus. If there were retained products of conception in the uterus causing an infection or a type 4 perineal tear involving a substantial portion of the rectum, lymphadenopathy of the internal iliac lymph nodes may be seen on the CT scan. The para-aortic lymph nodes drain the ovaries, but this is not relevant to the patient’s case as there is no indication of an ovarian pathology.

      Lymphatic drainage is the process by which lymphatic vessels carry lymph, a clear fluid containing white blood cells, away from tissues and organs and towards lymph nodes. The lymphatic vessels that drain the skin and follow venous drainage are called superficial lymphatic vessels, while those that drain internal organs and structures follow the arteries and are called deep lymphatic vessels. These vessels eventually lead to lymph nodes, which filter and remove harmful substances from the lymph before it is returned to the bloodstream.

      The lymphatic system is divided into two main ducts: the right lymphatic duct and the thoracic duct. The right lymphatic duct drains the right side of the head and right arm, while the thoracic duct drains everything else. Both ducts eventually drain into the venous system.

      Different areas of the body have specific primary lymph node drainage sites. For example, the superficial inguinal lymph nodes drain the anal canal below the pectinate line, perineum, skin of the thigh, penis, scrotum, and vagina. The deep inguinal lymph nodes drain the glans penis, while the para-aortic lymph nodes drain the testes, ovaries, kidney, and adrenal gland. The axillary lymph nodes drain the lateral breast and upper limb, while the internal iliac lymph nodes drain the anal canal above the pectinate line, lower part of the rectum, and pelvic structures including the cervix and inferior part of the uterus. The superior mesenteric lymph nodes drain the duodenum and jejunum, while the inferior mesenteric lymph nodes drain the descending colon, sigmoid colon, and upper part of the rectum. Finally, the coeliac lymph nodes drain the stomach.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 20 - As a medical student on a surgical team, the FY1 doctor requests that...

    Incorrect

    • As a medical student on a surgical team, the FY1 doctor requests that you conduct a group and save blood test for a patient prior to their operation. The patient, who is identified as being in their 50s, has blood group A and therefore has anti-B antibodies. What type of antibodies will they possess?

      Your Answer:

      Correct Answer: IgM

      Explanation:

      The IgM antibody is composed of five antibodies joined together and is primarily responsible for clumping antigens. Anti-A and anti-B antibodies are typically IgM and are produced during early childhood due to exposure to environmental factors like bacteria, viruses, and food.

      On the other hand, IgG is the most prevalent antibody and exists as a single antibody complex. IgD, on the other hand, is located on the surface of B-lymphocytes.

      Blood product transfusion complications can be categorized into immunological, infective, and other complications. Immunological complications include acute haemolytic reactions, non-haemolytic febrile reactions, and allergic/anaphylaxis reactions. Infective complications may arise due to transmission of vCJD, although measures have been taken to minimize this risk. Other complications include transfusion-related acute lung injury (TRALI), transfusion-associated circulatory overload (TACO), hyperkalaemia, iron overload, and clotting.

      Non-haemolytic febrile reactions are thought to be caused by antibodies reacting with white cell fragments in the blood product and cytokines that have leaked from the blood cell during storage. These reactions may occur in 1-2% of red cell transfusions and 10-30% of platelet transfusions. Minor allergic reactions may also occur due to foreign plasma proteins, while anaphylaxis may be caused by patients with IgA deficiency who have anti-IgA antibodies.

      Acute haemolytic transfusion reaction is a serious complication that results from a mismatch of blood group (ABO) which causes massive intravascular haemolysis. Symptoms begin minutes after the transfusion is started and include a fever, abdominal and chest pain, agitation, and hypotension. Treatment should include immediate transfusion termination, generous fluid resuscitation with saline solution, and informing the lab. Complications include disseminated intravascular coagulation and renal failure.

      TRALI is a rare but potentially fatal complication of blood transfusion that is characterized by the development of hypoxaemia/acute respiratory distress syndrome within 6 hours of transfusion. On the other hand, TACO is a relatively common reaction due to fluid overload resulting in pulmonary oedema. As well as features of pulmonary oedema, the patient may also be hypertensive, a key difference from patients with TRALI.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 21 - A 35-year-old man is diagnosed with a DVT in his right leg, which...

    Incorrect

    • A 35-year-old man is diagnosed with a DVT in his right leg, which is determined to be caused by a genetic disorder. What is the most prevalent hereditary factor leading to DVT?

      Your Answer:

      Correct Answer: Factor V Leiden

      Explanation:

      Deep vein thrombosis is a condition that occurs more frequently in Caucasians than in people of black African, Far East Asian, native Australian, and native American origin. The most common heritable causes of DVT, in descending order, are Factor V Leiden, Prothrombin G20210A variant, Protein C deficiency, Protein S deficiency, and Antithrombin deficiency. However, Von Willebrand disease and thalassaemia are not associated with DVT.

      Understanding Factor V Leiden

      Factor V Leiden is a common inherited thrombophilia, affecting around 5% of the UK population. It is caused by a mutation in the Factor V Leiden protein, resulting in activated factor V being inactivated 10 times more slowly by activated protein C than normal. This leads to activated protein C resistance, which increases the risk of venous thrombosis. Heterozygotes have a 4-5 fold risk of venous thrombosis, while homozygotes have a 10 fold risk, although the prevalence of homozygotes is much lower at 0.05%.

      Despite its prevalence, screening for Factor V Leiden is not recommended, even after a venous thromboembolism. This is because a previous thromboembolism itself is a risk factor for further events, and specific management should be based on this rather than the particular thrombophilia identified.

      Other inherited thrombophilias include Prothrombin gene mutation, Protein C deficiency, Protein S deficiency, and Antithrombin III deficiency. The table below shows the prevalence and relative risk of venous thromboembolism for each of these conditions.

      Overall, understanding Factor V Leiden and other inherited thrombophilias can help healthcare professionals identify individuals at higher risk of venous thrombosis and provide appropriate management to prevent future events.

      Condition | Prevalence | Relative risk of VTE
      — | — | —
      Factor V Leiden (heterozygous) | 5% | 4
      Factor V Leiden (homozygous) | 0.05% | 10
      Prothrombin gene mutation (heterozygous) | 1.5% | 3
      Protein C deficiency | 0.3% | 10
      Protein S deficiency | 0.1% | 5-10
      Antithrombin III deficiency | 0.02% | 10-20

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 22 - A 62-year-old man presents to his GP with a complaint of lower back...

    Incorrect

    • A 62-year-old man presents to his GP with a complaint of lower back pain that has been bothering him for the past month. He denies any recent injury or trauma to his back. The pain is constant and is localized around the T12 and L1 vertebrae. Additionally, he has been experiencing night sweats and has lost around one stone in weight over the past two months, despite having a normal appetite. He also reports experiencing paraesthesia in the first three and a half digits of his right hand. What is the most probable cause of this patient's back pain?

      Your Answer:

      Correct Answer: Multiple myeloma

      Explanation:

      Multiple Myeloma and Carpal Tunnel Syndrome

      Multiple myeloma (MM) is a condition that results in the increased production of amyloid light chains, which can deposit in various organs, including the narrow carpal tunnel. This deposition can cause carpal tunnel syndrome, which is characterized by median nerve neuropathy. MM is caused by the clonal proliferation of monoclonal antibodies, which can lead to increased plasma volume and free light chains in the blood. These free light chains can then be processed into insoluble fibrillation proteins and deposited in various tissues throughout the body, resulting in amyloid deposits.

      It is important to note the ALARM signs and symptoms in the clinical history, such as unexplained weight loss and night sweats, which can indicate malignancy. In this case, MM and prostatic carcinoma are the two most likely options. However, the absence of urinary symptoms in this patient makes MM more likely. It is important to consider that an elderly gentleman presenting with low back pain could suggest secondary metastases to axial vertebral bone from primary prostatic carcinoma and should be high up on the list of differentials.

      In summary, carpal tunnel syndrome can be a result of amyloid deposition in the carpal tunnel due to MM. It is important to consider the ALARM signs and symptoms in the clinical history to determine the likelihood of malignancy, and to consider other potential causes of symptoms such as vertebral compression fracture.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 23 - A 60-year-old man comes to the clinic complaining of a lump on the...

    Incorrect

    • A 60-year-old man comes to the clinic complaining of a lump on the left side of his neck. During the examination, a firm and non-tender swelling is found over the angle of the mandible. The patient also displays asymmetrical facial features, including drooping of the angle of the mouth on the left and an inability to close his left eyelid. What is the probable diagnosis?

      Your Answer:

      Correct Answer: Malignant parotid tumour

      Explanation:

      Parotid Mass and Facial Nerve Involvement

      Swelling over the angle of the mandible is a common site for a parotid mass. The majority of these masses are benign, with pleomorphic adenomas being the most common type. However, Warthin’s tumour is also a possibility. Malignancy is indicated when there is involvement of the facial nerve, which is a feature found in malignant parotid tumours. Bilateral facial nerve involvement with bilateral parotid swelling may be indicative of sarcoidosis. Parotitis, on the other hand, causes painful acute swelling over the parotid gland with redness. Bell’s palsy is a benign and often temporary paralysis of the facial nerve, which is usually preceded by a viral infection that causes inflammation and paralysis.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 24 - A patient presents to the emergency department with shortness of breath and fatigue....

    Incorrect

    • A patient presents to the emergency department with shortness of breath and fatigue. Upon examination, a purpuric rash is discovered on their torso, arms, and legs. The initial blood test results are as follows:

      Hb 78 g/L Male: (135-180)
      Female: (115 - 160)
      Platelets 43 * 109/L (150 - 400)
      WBC 9.3 * 109/L (4.0 - 11.0)

      A blood film reveals numerous fragmented red cells (schistocytes) and marked thrombocytopenia, indicating intravascular hemolysis with high levels of free hemoglobin. To confirm this diagnosis, which of the following additional test results would be helpful?

      Your Answer:

      Correct Answer: Low haptoglobins

      Explanation:

      Haptoglobin is a liver-produced protein that binds to free haemoglobin in blood plasma, allowing the reticuloendothelial system to remove it. This consumption of haptoglobin reduces its detectable levels in the blood, making it a useful indicator of haemolysis.

      If an individual has a functioning liver, conjugated bilirubin levels will increase in haemolysis. This is because the liver generates conjugated bilirubin from unconjugated bilirubin, which is produced from the porphyrin rings of haemoglobin. Conjugated bilirubin is more soluble in water and can be secreted through the kidneys.

      Lactate dehydrogenase is an intracellular enzyme that is leaked from cells, including erythrocytes, which are broken down. Its levels increase due to cell breakdown, not only in haemolysis but also in cardiomyocyte damage due to infarction and lymphocyte turnover due to leukaemia.

      Potassium is an intracellular ion that can increase in levels due to haemolysis and cell breakdown. This can lead to cardiac arrhythmias such as ventricular tachycardia and fibrillation.

      Low platelets and a purpuric rash suggest that the likely form of intravascular haemolysis is a microangiopathic haemolytic anaemia (MAHA) such as thrombotic thrombocytopenic purpura (TTP) or haemolytic uraemic syndrome (HUS). These rare conditions result in the accumulation of intravascular thrombosis, leading to platelet and clotting factor consumption.

      Understanding Haemolytic Anaemias by Site

      Haemolytic anaemias can be classified by the site of haemolysis, either intravascular or extravascular. In intravascular haemolysis, free haemoglobin is released and binds to haptoglobin. As haptoglobin becomes saturated, haemoglobin binds to albumin forming methaemalbumin, which can be detected by Schumm’s test. Free haemoglobin is then excreted in the urine as haemoglobinuria and haemosiderinuria. Causes of intravascular haemolysis include mismatched blood transfusion, red cell fragmentation due to heart valves, TTP, DIC, HUS, paroxysmal nocturnal haemoglobinuria, and cold autoimmune haemolytic anaemia.

      On the other hand, extravascular haemolysis occurs when red blood cells are destroyed by macrophages in the spleen or liver. This type of haemolysis is commonly seen in haemoglobinopathies such as sickle cell anaemia and thalassaemia, hereditary spherocytosis, haemolytic disease of the newborn, and warm autoimmune haemolytic anaemia.

      It is important to understand the site of haemolysis in order to properly diagnose and treat haemolytic anaemias. While both intravascular and extravascular haemolysis can lead to anaemia, the underlying causes and treatment approaches may differ.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 25 - A 44-year-old man presents with a widespread maculopapular rash and fever after undergoing...

    Incorrect

    • A 44-year-old man presents with a widespread maculopapular rash and fever after undergoing haematopoietic cell transplantation for multiple myeloma. The diagnosis is GVHD. What cell type is primarily responsible for the patient's symptoms?

      Your Answer:

      Correct Answer: Donor T cells

      Explanation:

      GVHD is a condition where T cells from the donor tissue (the graft) attack healthy cells in the recipient (the host). This can occur after a haematopoietic cell transplantation and is diagnosed based on symptoms such as fever, rash, and gastrointestinal issues. Antigen-presenting cells activate the donor T cells, but do not attack host cells. B cells, host T cells, and mast cells do not contribute to the attack on host tissue in GVHD.

      Understanding Graft Versus Host Disease

      Graft versus host disease (GVHD) is a complication that can occur after bone marrow or solid organ transplantation. It happens when the T cells in the donor tissue attack the recipient’s cells. This is different from transplant rejection, where the recipient’s immune cells attack the donor tissue. GVHD is diagnosed using the Billingham criteria, which require that the transplanted tissue contains functioning immune cells, the donor and recipient are immunologically different, and the recipient is immunocompromised.

      The incidence of GVHD varies, but it can occur in up to 50% of patients who receive allogeneic bone marrow transplants. Risk factors include poorly matched donor and recipient, the type of conditioning used before transplantation, gender disparity between donor and recipient, and the source of the graft.

      Acute and chronic GVHD are considered separate syndromes. Acute GVHD typically occurs within 100 days of transplantation and affects the skin, liver, and gastrointestinal tract. Chronic GVHD may occur after acute disease or arise de novo and has a more varied clinical picture.

      Diagnosis of GVHD is largely clinical and based on the exclusion of other pathology. Signs and symptoms of acute GVHD include a painful rash, jaundice, diarrhea, nausea, vomiting, and fever. Chronic GVHD can affect the skin, eyes, gastrointestinal tract, and lungs.

      Treatment of GVHD involves immunosuppression and supportive measures. Intravenous steroids are the mainstay of treatment for severe cases of acute GVHD, while extended courses of steroid therapy are often needed in chronic GVHD. Second-line therapies include anti-TNF, mTOR inhibitors, and extracorporeal photopheresis. Topical steroid therapy may be sufficient in mild disease with limited cutaneous involvement. However, excessive immunosuppression may increase the risk of infection and limit the beneficial graft-versus-tumor effect of the transplant.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 26 - A 20-year-old male patient complains of lethargy and night sweats. During examination, left...

    Incorrect

    • A 20-year-old male patient complains of lethargy and night sweats. During examination, left supraclavicular lymphadenopathy is detected. A biopsy of the left supraclavicular lymph node is performed by a surgical registrar, and the pathologist identifies Reed-Sternberg cells on the subsequent histology sections. What is the most probable diagnosis?

      Your Answer:

      Correct Answer: Hodgkin's lymphoma

      Explanation:

      Hodgkin’s disease is characterized by the presence of Reed-Sternberg cells in histological examination.

      Causes of Generalised Lymphadenopathy

      Generalised lymphadenopathy refers to the enlargement of multiple lymph nodes throughout the body. There are various causes of this condition, including infectious, neoplastic, and autoimmune conditions. Infectious causes include infectious mononucleosis, HIV, eczema with secondary infection, rubella, toxoplasmosis, CMV, tuberculosis, and roseola infantum. Neoplastic causes include leukaemia and lymphoma. Autoimmune conditions such as SLE and rheumatoid arthritis, graft versus host disease, and sarcoidosis can also cause generalised lymphadenopathy. Additionally, certain drugs like phenytoin and to a lesser extent allopurinol and isoniazid can also lead to this condition. It is important to identify the underlying cause of generalised lymphadenopathy to determine the appropriate treatment.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 27 - A 55-year old man presents to the clinic with a recent diagnosis of...

    Incorrect

    • A 55-year old man presents to the clinic with a recent diagnosis of type 2 diabetes and increasing issues with erectile dysfunction. During the examination, you observe a pigmented appearance, gynaecomastia, a lack of body hair, and hepatomegaly of two finger breadths. What diagnostic investigation should be performed?

      Your Answer:

      Correct Answer: Iron studies

      Explanation:

      Haemochromatosis Diagnosis and Overview

      Haemochromatosis is a genetic disorder that is inherited in an autosomal recessive manner. It is caused by abnormalities in the HFE gene. The diagnosis of haemochromatosis can be suggested by the presence of diabetes, hypogonadism, deranged liver function, and pigmentation. An elevation of serum ferritin is expected in this condition, and further assessment of iron storage can be done by measuring transferrin saturation. Other investigations may also be necessary to assess the complications of type 2 diabetes and the end organ consequences of haemochromatosis.

      Overall, haemochromatosis is a condition that affects iron metabolism in the body. It can lead to iron overload and damage to various organs, including the liver, heart, and pancreas. Early diagnosis and treatment are important to prevent complications and improve outcomes.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 28 - A 29-year-old man is admitted to the haematology ward for acute lymphocytic leukaemia...

    Incorrect

    • A 29-year-old man is admitted to the haematology ward for acute lymphocytic leukaemia treatment. You are consulted due to his complaint of supra-pubic pain and frank haematuria. Upon checking his medication, you observe that he is taking cyclophosphamide and suspect that he may have developed haemorrhagic cystitis from this drug.

      What is the primary mode of action of cyclophosphamide?

      Your Answer:

      Correct Answer: Cross-linking in DNA

      Explanation:

      Cyclophosphamide is a medication that is used to treat various types of cancer and induce immunosuppression in patients before stem cell transplantation. It works by causing cross-linking in DNA. However, one of the complications of cyclophosphamide treatment is haemorrhagic cystitis. This occurs because when the liver breaks down cyclophosphamide, it releases a toxic metabolite called acrolein. Acrolein is concentrated in the bladder and triggers an inflammatory response that can lead to haemorrhagic cystitis.

      To reduce the risk of haemorrhagic cystitis, doctors can administer MESNA, a drug that conjugates acrolein and reduces the inflammatory response.

      Bleomycin, on the other hand, degrades preformed DNA instead of causing cross-linking. Hydroxyurea inhibits ribonucleotide reductase, which decreases DNA synthesis. 5-Fluorouracil (5-FU) is a pyrimidine analogue that arrests the cell cycle and induces apoptosis. Vincristine inhibits the formation of microtubules.

      Cytotoxic agents are drugs that are used to kill cancer cells. There are several types of cytotoxic agents, each with their own mechanism of action and potential adverse effects. Alkylating agents, such as cyclophosphamide, work by causing cross-linking in DNA. However, they can also cause haemorrhagic cystitis, myelosuppression, and transitional cell carcinoma. Cytotoxic antibiotics, like bleomycin and anthracyclines, degrade preformed DNA and stabilize DNA-topoisomerase II complex, respectively. However, they can also cause lung fibrosis and cardiomyopathy. Antimetabolites, such as methotrexate and fluorouracil, inhibit dihydrofolate reductase and thymidylate synthesis, respectively. However, they can also cause myelosuppression, mucositis, and liver or lung fibrosis. Drugs that act on microtubules, like vincristine and docetaxel, inhibit the formation of microtubules and prevent microtubule depolymerisation & disassembly, respectively. However, they can also cause peripheral neuropathy, myelosuppression, and paralytic ileus. Topoisomerase inhibitors, like irinotecan, inhibit topoisomerase I, which prevents relaxation of supercoiled DNA. However, they can also cause myelosuppression. Other cytotoxic drugs, such as cisplatin and hydroxyurea, cause cross-linking in DNA and inhibit ribonucleotide reductase, respectively. However, they can also cause ototoxicity, peripheral neuropathy, hypomagnesaemia, and myelosuppression.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 29 - A 48-year-old woman presents to the clinic with complaints of abdominal pain and...

    Incorrect

    • A 48-year-old woman presents to the clinic with complaints of abdominal pain and constipation. During the examination, you observe blue lines on the gum margin. She also reports experiencing weakness in her legs over the past few days. What is the probable diagnosis?

      Your Answer:

      Correct Answer: Lead poisoning

      Explanation:

      Lead poisoning is a condition that should be considered when a patient presents with abdominal pain and neurological symptoms, along with acute intermittent porphyria. This condition is caused by defective ferrochelatase and ALA dehydratase function. Symptoms of lead poisoning include abdominal pain, peripheral neuropathy (mainly motor), neuropsychiatric features, fatigue, constipation, and blue lines on the gum margin (which is rare in children and only present in 20% of adult patients).

      To diagnose lead poisoning, doctors typically measure the patient’s blood lead level, with levels greater than 10 mcg/dl considered significant. A full blood count may also be performed, which can reveal microcytic anemia and red cell abnormalities such as basophilic stippling and clover-leaf morphology. Additionally, raised serum and urine levels of delta aminolaevulinic acid may be seen, which can sometimes make it difficult to differentiate from acute intermittent porphyria. Urinary coproporphyrin is also increased, while urinary porphobilinogen and uroporphyrin levels are normal to slightly increased. In children, lead can accumulate in the metaphysis of the bones, although x-rays are not typically part of the standard work-up.

      Various chelating agents are currently used to manage lead poisoning, including dimercaptosuccinic acid (DMSA), D-penicillamine, EDTA, and dimercaprol. These agents work to remove the lead from the body and can help alleviate symptoms.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 30 - The oxygen-haemoglobin dissociation curve is shifted to the right in which of the...

    Incorrect

    • The oxygen-haemoglobin dissociation curve is shifted to the right in which of the following situations?

      Your Answer:

      Correct Answer: Chronic iron deficiency anaemia

      Explanation:

      A helpful mnemonic to remember the causes of a right shift in the oxygen dissociation curve is CADET face RIGHT. This stands for C O2, Acidosis, 2,3-DPG, Exercise, and Temperature. A right shift in the curve indicates an increased oxygen demand by the tissues, which can be caused by factors such as higher temperatures, acidosis, and increased levels of DPG. DPG is a molecule found in red blood cells that is elevated during glycolysis and can bind to hemoglobin, releasing oxygen to the tissues. Conditions associated with poor oxygen delivery, such as anemia and high altitude, can also lead to increased DPG levels.

      Oxygen Transport and Factors Affecting Haemoglobin Saturation

      Oxygen transport in the body is mainly carried out by erythrocytes, with only 1% of oxygen being transported as a solution due to its limited solubility. The amount of oxygen transported depends on the concentration of haemoglobin and its degree of saturation. Haemoglobin is a globular protein composed of four subunits, with two alpha and two beta subunits forming globin. Haem, which surrounds an iron atom in its ferrous state, can form two additional bonds with oxygen and a polypeptide chain. The oxygenation of haemoglobin is a reversible reaction, and the molecular shape of haemoglobin facilitates the binding of subsequent oxygen molecules.

      The oxygen dissociation curve describes the relationship between the percentage of saturated haemoglobin and partial pressure of oxygen in the blood, and it is not affected by haemoglobin concentration. The curve can be shifted to the right or left by various factors. Chronic anaemia, for example, causes an increase in 2,3 DPG levels, which shifts the curve to the right, resulting in lower oxygen delivery. The Haldane effect causes a shift to the left, resulting in decreased oxygen delivery to tissues, while the Bohr effect causes a shift to the right, resulting in enhanced oxygen delivery to tissues. Factors that shift the curve to the left include low levels of H+, pCO2, 2,3-DPG, and temperature, as well as the presence of HbF, methaemoglobin, and carboxyhaemoglobin. Factors that shift the curve to the right include raised levels of H+, pCO2, and 2,3-DPG, as well as increased temperature.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Haematology And Oncology (1/4) 25%
Passmed