00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 26-year-old male presents to his general practitioner with polyuria. He complains that...

    Incorrect

    • A 26-year-old male presents to his general practitioner with polyuria. He complains that it has been affecting his social life, as he often has to go to the bathroom in the middle of social situations. The patient mentions that he notices this mostly when he drinks alcohol with his friends. He is otherwise feeling well. There is no significant past medical history and he is not on any regular medication. Clinical examinations are normal. A urine dipstick test shows no abnormalities. Blood results show no electrolyte abnormalities. The general practitioner explains that his symptoms are likely related to alcohol intake, as alcohol can cause polyuria.

      What is the most likely physiological explanation for this patient's polyuria?

      Your Answer: Osmotic diuresis

      Correct Answer: Suppressed antidiuretic hormone secretion

      Explanation:

      Polyuria in the patient is most likely caused by alcohol bingeing, which can suppress ADH secretion in the posterior pituitary gland. This leads to decreased water reabsorption in the kidneys and subsequent polyuria. Other potential causes such as ADH resistance from chronic lithium ingestion, diabetes insipidus, osmotic diuresis from hyperglycemia, and chronic kidney disease are less likely based on the patient’s symptoms and investigative findings.

      Polyuria, or excessive urination, can be caused by a variety of factors. A recent review in the BMJ categorizes these causes by their frequency of occurrence. The most common causes of polyuria include the use of diuretics, caffeine, and alcohol, as well as diabetes mellitus, lithium, and heart failure. Less common causes include hypercalcaemia and hyperthyroidism, while rare causes include chronic renal failure, primary polydipsia, and hypokalaemia. The least common cause of polyuria is diabetes insipidus, which occurs in less than 1 in 10,000 cases. It is important to note that while these frequencies may not align with exam questions, understanding the potential causes of polyuria can aid in diagnosis and treatment.

    • This question is part of the following fields:

      • Renal System
      22.7
      Seconds
  • Question 2 - A 24-year-old male patient visits his GP after observing swelling in his legs....

    Correct

    • A 24-year-old male patient visits his GP after observing swelling in his legs. He mentions that his urine has turned frothy. Upon conducting blood tests, the doctor discovers elevated cholesterol levels and reduced albumin.

      What type of electrolyte imbalances should the GP anticipate in this individual?

      Your Answer: Hypervolaemic hyponatraemia

      Explanation:

      Hypervolaemic hyponatraemia can be caused by nephrotic syndrome.

      Nephrotic syndrome is characterized by oedema, proteinuria, hypercholesterolaemia, and hypoalbuminaemia. It results in fluid retention, which can lead to hypervolaemic hyponatraemia. Urinary sodium levels would not show an increase if tested.

      Understanding Hyponatraemia: Causes and Diagnosis

      Hyponatraemia is a condition that can be caused by either an excess of water or a depletion of sodium in the body. However, it is important to note that there are also cases of pseudohyponatraemia, which can be caused by factors such as hyperlipidaemia or taking blood from a drip arm. To diagnose hyponatraemia, doctors often look at the levels of urinary sodium and osmolarity.

      If the urinary sodium level is above 20 mmol/l, it may indicate sodium depletion due to renal loss or the use of diuretics such as thiazides or loop diuretics. Other possible causes include Addison’s disease or the diuretic stage of renal failure. On the other hand, if the patient is euvolaemic, it may be due to conditions such as SIADH (urine osmolality > 500 mmol/kg) or hypothyroidism.

      If the urinary sodium level is below 20 mmol/l, it may indicate sodium depletion due to extrarenal loss caused by conditions such as diarrhoea, vomiting, sweating, burns, or adenoma of rectum. Alternatively, it may be due to water excess, which can cause the patient to be hypervolaemic and oedematous. This can be caused by conditions such as secondary hyperaldosteronism, nephrotic syndrome, IV dextrose, or psychogenic polydipsia.

      In summary, hyponatraemia can be caused by a variety of factors, and it is important to diagnose the underlying cause in order to provide appropriate treatment. By looking at the levels of urinary sodium and osmolarity, doctors can determine the cause of hyponatraemia and provide the necessary interventions.

    • This question is part of the following fields:

      • Renal System
      36.2
      Seconds
  • Question 3 - A 42-year-old woman is undergoing left kidney donation surgery for her sister. During...

    Correct

    • A 42-year-old woman is undergoing left kidney donation surgery for her sister. During the procedure, which structure will be located most anteriorly at the hilum of the left kidney?

      Your Answer: Left renal vein

      Explanation:

      The anterior position is occupied by the renal veins, while the artery and ureter are located posteriorly.

      Anatomy of the Renal Arteries

      The renal arteries are blood vessels that supply the kidneys with oxygenated blood. They are direct branches off the aorta and enter the kidney at the hilum. The right renal artery is longer than the left renal artery. The renal vein, artery, and pelvis also enter the kidney at the hilum.

      The right renal artery is related to the inferior vena cava, right renal vein, head of the pancreas, and descending part of the duodenum. On the other hand, the left renal artery is related to the left renal vein and tail of the pancreas.

      In some cases, there may be accessory arteries, mainly on the left side. These arteries usually pierce the upper or lower part of the kidney instead of entering at the hilum.

      Before reaching the hilum, each renal artery divides into four or five segmental branches that supply each pyramid and cortex. These segmental branches then divide within the sinus into lobar arteries. Each vessel also gives off small inferior suprarenal branches to the suprarenal gland, ureter, and surrounding tissue and muscles.

    • This question is part of the following fields:

      • Renal System
      11.9
      Seconds
  • Question 4 - You have been asked to take a history from a patient in a...

    Incorrect

    • You have been asked to take a history from a patient in a breast clinic at the hospital. You clerk a 68-year-old woman, who had a right-sided mastectomy for invasive ductal carcinoma 3 years ago; she has now presented for follow-up. From your history, you elicit that she has had no symptoms of recurrence, and is still currently taking an aromatase inhibitor called letrozole, due to the findings of immunohistochemistry when the biopsy was taken.

      What is the mechanism of action of this drug?

      Your Answer: Specific binding to HER2 receptors

      Correct Answer: Inhibition of the conversion of testosterone to oestradiol

      Explanation:

      Breast cancers that are positive for oestrogen receptors can be treated by reducing oestrogen levels, which can lower the risk of recurrence. Aromatase inhibitors are commonly prescribed to postmenopausal women with oestrogen-positive breast cancer for a period of 5 years, but they can cause side effects such as a decrease in bone density and an increase in osteoporosis risk. Tamoxifen is another medication that can modulate the effect of oestrogen on the breast and is usually prescribed to premenopausal women. Letrozole, on the other hand, does not fall into this category and does not exhibit negative feedback on the HPO axis. Trastuzumab is a drug that binds to HER2 receptors and is used for breast cancers that have a positive HER2 receptor status. Letrozole may be given alongside this drug if the tumour is also oestrogen receptor positive. Letrozole is not a selective progesterone receptor modulator, unlike drugs such as ulipristal acetate.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      28.8
      Seconds
  • Question 5 - A healthy 35-year-old man gives a blood donation of 500ml. What is the...

    Correct

    • A healthy 35-year-old man gives a blood donation of 500ml. What is the most probable process that will take place?

      Your Answer: Activation of the renin angiotensin system

      Explanation:

      Losing 500ml of fluid (for a 70 Kg male) is typically enough to trigger the renin angiotensin system, but it is unlikely to cause any other bodily disruptions.

      Understanding Bleeding and its Effects on the Body

      Bleeding, even if it is of a small volume, triggers a response in the body that causes generalised splanchnic vasoconstriction. This response is mediated by the activation of the sympathetic nervous system. The process of vasoconstriction is usually enough to maintain renal perfusion and cardiac output if the volume of blood lost is small. However, if greater volumes of blood are lost, the renin angiotensin system is activated, resulting in haemorrhagic shock.

      The body’s physiological measures can restore circulating volume if the source of bleeding ceases. Ongoing bleeding, on the other hand, will result in haemorrhagic shock. Blood loss is typically quantified by the degree of shock produced, which is determined by parameters such as blood loss volume, pulse rate, blood pressure, respiratory rate, urine output, and symptoms. Understanding the effects of bleeding on the body is crucial in managing and treating patients who experience blood loss.

    • This question is part of the following fields:

      • Renal System
      19.3
      Seconds
  • Question 6 - A senior citizen who is unfamiliar to you arrives with seizures. A companion...

    Correct

    • A senior citizen who is unfamiliar to you arrives with seizures. A companion describes that he had been experiencing a prickling sensation around his mouth and muscle contractions in his extremities.

      What blood test outcomes would you anticipate from these indications?

      Your Answer: Hypocalcaemia

      Explanation:

      The correct answer is hypocalcaemia, which is characterized by perioral paraesthesia, cramps, tetany, and convulsions. Hypophosphatemia and hypokalaemia are not the most appropriate answers, as they would not cause these symptoms. Sepsis is also an incorrect answer.

      Hypocalcaemia: Symptoms and Signs

      Hypocalcaemia is a condition characterized by low levels of calcium in the blood. As calcium is essential for proper muscle and nerve function, many of the symptoms and signs of hypocalcaemia are related to neuromuscular excitability. The most common features of hypocalcaemia include muscle twitching, cramping, and spasms, as well as perioral paraesthesia. In chronic cases, patients may experience depression and cataracts. An electrocardiogram (ECG) may show a prolonged QT interval.

      Two specific signs that are commonly used to diagnose hypocalcaemia are Trousseau’s sign and Chvostek’s sign. Trousseau’s sign is observed when the brachial artery is occluded by inflating the blood pressure cuff and maintaining pressure above systolic. This causes wrist flexion and fingers to be drawn together, which is seen in around 95% of patients with hypocalcaemia and around 1% of normocalcaemic people. Chvostek’s sign is observed when tapping over the parotid gland causes facial muscles to twitch. This sign is seen in around 70% of patients with hypocalcaemia and around 10% of normocalcaemic people. Overall, hypocalcaemia can cause a range of symptoms and signs that are related to neuromuscular excitability, and specific diagnostic signs can be used to confirm the diagnosis.

    • This question is part of the following fields:

      • Renal System
      13.4
      Seconds
  • Question 7 - An 80-year-old woman arrives at the emergency department with complaints of palpitations. She...

    Correct

    • An 80-year-old woman arrives at the emergency department with complaints of palpitations. She denies any history of cardiac issues or chest pain. Upon conducting an ECG, you observe small P waves and tall tented T waves. You suspect hyperkalaemia and urgently order a blood test to measure her potassium levels. What could be a potential cause of hyperkalaemia?

      Your Answer: Renal failure

      Explanation:

      Renal failure is the correct answer. The kidneys play a crucial role in maintaining potassium balance in the body by regulating potassium intake and excretion. When renal failure occurs, the excretion of potassium is disrupted, leading to hyperkalaemia.

      On the other hand, vomiting and diarrhoea can cause hypokalaemia.

      Alkalosis is characterized by a high serum pH. In this condition, the reduced number of hydrogen ions entering the cell results in less potassium leaving the cell, which can lead to hypokalaemia.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      43.7
      Seconds
  • Question 8 - A seven-year-old boy is being investigated for recurrent urinary tract infections. Imaging reveals...

    Incorrect

    • A seven-year-old boy is being investigated for recurrent urinary tract infections. Imaging reveals abnormal fusion of the inferior poles of both kidneys, leading to a diagnosis of horseshoe kidney. During fetal development, what structure traps horseshoe kidneys as they ascend anteriorly?

      Your Answer: Aortic bifurcation

      Correct Answer: Inferior mesenteric artery

      Explanation:

      During fetal development, horseshoe kidneys become trapped under the inferior mesenteric artery as they ascend from the pelvis, resulting in their remaining low in the abdomen. This can lead to complications such as renal stones, infections, and hydronephrosis, including urteropelvic junction obstruction.

      Understanding Horseshoe Kidney Abnormality

      Horseshoe kidney is a condition that occurs during the embryonic development of the kidneys, where the lower poles of the kidneys fuse together, resulting in a U-shaped kidney. This abnormality is relatively common, affecting approximately 1 in 500 people in the general population. However, it is more prevalent in individuals with Turner’s syndrome, affecting 1 in 20 individuals with the condition.

      The fused kidney is typically located lower than normal due to the root of the inferior mesenteric artery, which prevents the anterior ascent. Despite this abnormality, most people with horseshoe kidney do not experience any symptoms. It is important to note that this condition does not typically require treatment unless complications arise. Understanding this condition can help individuals with horseshoe kidney and their healthcare providers manage any potential health concerns.

    • This question is part of the following fields:

      • Renal System
      19.4
      Seconds
  • Question 9 - An 71-year-old man arrives at the emergency department complaining of severe back pain...

    Incorrect

    • An 71-year-old man arrives at the emergency department complaining of severe back pain that started 2 hours ago. The pain is radiating from his flank to his groin and comes and goes in waves. He had a kidney stone 2 months ago. A CT scan reveals a hyperdense calculus in his left ureter. His serum calcium level is 2.1 mmol/L (normal range: 2.2-2.6) and his urine calcium level is 9.2 mmol/24hours (normal range: 2.5-7.5). What medication is the most appropriate to reduce the risk of further renal stones?

      Your Answer: Denosumab

      Correct Answer: Bendroflumethiazide

      Explanation:

      Thiazide diuretics, specifically bendroflumethiazide, can be used to decrease calcium excretion and stone formation in patients with hypercalciuria and renal stones. The patient’s urinary calcium levels indicate hypercalciuria, which can be managed with thiazide diuretics. Bumetanide and furosemide, both loop diuretics, are not effective in managing hypercalciuria and renal stones. Denosumab, an antibody used for hypercalcaemia associated with malignancy, is not used in the management of renal stones.

      Management and Prevention of Renal Stones

      Renal stones, also known as kidney stones, can cause severe pain and discomfort. The British Association of Urological Surgeons (BAUS) has published guidelines on the management of acute ureteric/renal colic. Initial management includes the use of NSAIDs as the analgesia of choice for renal colic, with caution taken when prescribing certain NSAIDs due to increased risk of cardiovascular events. Alpha-adrenergic blockers are no longer routinely recommended, but may be beneficial for patients amenable to conservative management. Initial investigations include urine dipstick and culture, serum creatinine and electrolytes, FBC/CRP, and calcium/urate levels. Non-contrast CT KUB is now recommended as the first-line imaging for all patients, with ultrasound having a limited role.

      Most renal stones measuring less than 5 mm in maximum diameter will pass spontaneously within 4 weeks. However, more intensive and urgent treatment is indicated in the presence of ureteric obstruction, renal developmental abnormality, and previous renal transplant. Treatment options include lithotripsy, nephrolithotomy, ureteroscopy, and open surgery. Shockwave lithotripsy involves generating a shock wave externally to the patient, while ureteroscopy involves passing a ureteroscope retrograde through the ureter and into the renal pelvis. Percutaneous nephrolithotomy involves gaining access to the renal collecting system and performing intra corporeal lithotripsy or stone fragmentation. The preferred treatment option depends on the size and complexity of the stone.

      Prevention of renal stones involves lifestyle modifications such as high fluid intake, low animal protein and salt diet, and thiazide diuretics to increase distal tubular calcium resorption. Calcium stones may also be due to hypercalciuria, which can be managed with thiazide diuretics. Oxalate stones can be managed with cholestyramine and pyridoxine, while uric acid stones can be managed with allopurinol and urinary alkalinization with oral bicarbonate.

    • This question is part of the following fields:

      • Renal System
      30.2
      Seconds
  • Question 10 - A 25-year-old male presents with a painless swelling of the testis. Histologically the...

    Incorrect

    • A 25-year-old male presents with a painless swelling of the testis. Histologically the stroma has a lymphocytic infiltrate. What is the most likely diagnosis?

      Seminoma is the most common type of testicular tumor and is frequently seen in males aged between 25-40 years. The classical subtype is the most prevalent, and histology shows a lymphocytic stromal infiltrate. Other subtypes include spermatocytic, anaplastic, and syncytiotrophoblast giant cells. A teratoma is more common in males aged 20-30 years.

      Your Answer: Spermatocytic seminoma

      Correct Answer: Classical seminoma

      Explanation:

      The most prevalent form of testicular tumor is seminoma, which is typically found in males between the ages of 30 and 40. The classical subtype of seminoma is the most common and is characterized by a lymphocytic stromal infiltrate. Other subtypes include spermatocytic, which features tumor cells that resemble spermatocytes and has a favorable prognosis, anaplastic, and syncytiotrophoblast giant cells, which contain β HCG. Teratoma, on the other hand, is more frequently observed in males between the ages of 20 and 30.

      Overview of Testicular Disorders

      Testicular disorders can range from benign conditions to malignant tumors. Testicular cancer is the most common malignancy in men aged 20-30 years, with germ-cell tumors accounting for 95% of cases. Seminomas are the most common subtype, while non-seminomatous germ cell tumors include teratoma, yolk sac tumor, choriocarcinoma, and mixed germ cell tumors. Risk factors for testicular cancer include cryptorchidism, infertility, family history, Klinefelter’s syndrome, and mumps orchitis. The most common presenting symptom is a painless lump, but pain, hydrocele, and gynecomastia may also be present.

      Benign testicular disorders include epididymo-orchitis, which is an acute inflammation of the epididymis often caused by bacterial infection. Testicular torsion, which results in testicular ischemia and necrosis, is most common in males aged between 10 and 30. Hydrocele presents as a mass that transilluminates and may occur as a result of a patent processus vaginalis in children. Treatment for these conditions varies, with orchidectomy being the primary treatment for testicular cancer. Surgical exploration is necessary for testicular torsion, while epididymo-orchitis and hydrocele may require medication or surgical procedures depending on the severity of the condition.

    • This question is part of the following fields:

      • Renal System
      43.9
      Seconds
  • Question 11 - An 82-year-old woman with a history of chronic kidney disease presents to the...

    Correct

    • An 82-year-old woman with a history of chronic kidney disease presents to the general practice with a painful left foot. The pain is sharp in nature and is felt mostly towards the posterior of the sole of the foot. The pain is most severe when the patient takes her first few steps after getting out of bed in the morning. There is no history of trauma. You diagnose plantar fasciitis. The usual treatment of plantar fasciitis is with NSAIDs. However, NSAIDs are contraindicated in severe renal disease. What is the effect of NSAIDs on the glomerular filtration pressure?

      Your Answer: Vasoconstriction of the afferent arteriole

      Explanation:

      The correct answer is vasoconstriction of the afferent arteriole, as explained in the following notes.

      ACE inhibitors and ARBs cause vasodilation of the efferent arteriole, which reduces glomerular filtration pressure. This effect is particularly significant in individuals with renal artery stenosis, as their kidneys receive limited perfusion, including the glomeruli.

      In a healthy individual, the afferent arteriole remains dilated, while the efferent arteriole remains constricted to maintain a fine balance of glomerular pressure. Vasodilation of the afferent arteriole or vasoconstriction of the efferent arteriole would both increase glomerular filtration pressure.

      The patient in the given question is experiencing symptoms that suggest plantar fasciitis, a common condition caused by inflammation of the plantar fascia in the foot.

      The Impact of NSAIDs on Kidney Function

      NSAIDs are commonly used anti-inflammatory drugs that work by inhibiting the enzymes COX-1 and COX-2, which are responsible for the synthesis of prostanoids such as prostaglandins and thromboxanes. In the kidneys, prostaglandins play a crucial role in vasodilating the afferent arterioles of the glomeruli, allowing for increased blood flow and a higher glomerular filtration rate (GFR).

      However, when NSAIDs inhibit the COX enzymes, the levels of prostaglandins decrease, leading to a reduction in afferent arteriole vasodilation and subsequently, a decrease in renal perfusion and GFR. This can have negative consequences for kidney function, particularly in individuals with pre-existing kidney disease or those taking high doses of NSAIDs for prolonged periods of time.

      It is important for healthcare providers to consider the potential impact of NSAIDs on kidney function and to monitor patients accordingly, especially those at higher risk for kidney damage. Alternative treatments or lower doses of NSAIDs may be recommended to minimize the risk of kidney injury.

    • This question is part of the following fields:

      • Renal System
      22.5
      Seconds
  • Question 12 - A 44-year-old man presents with a three-week history of leg swelling. He has...

    Incorrect

    • A 44-year-old man presents with a three-week history of leg swelling. He has no past medical history except for a bout of sore throat at the age of 15. He is not on any medications. On examination, his blood pressure is 155/94 mmHg, and he has pitting edema. Urinalysis reveals 4+ protein with no RBC casts. A biopsy confirms the diagnosis of membranous glomerulonephritis.

      What is the most probable cause of this patient's condition?

      Your Answer: Systemic lupus erythematosus

      Correct Answer: Anti-phospholipase A2 antibodies

      Explanation:

      The likely diagnosis for this patient is idiopathic membranous glomerulonephritis, which is associated with anti-phospholipase A2 antibodies. While hypertension may be present in patients with nephrotic syndrome, it is not the cause of membranous glomerulonephritis. Secondary causes of membranous glomerulonephritis include malignancy (such as lung cancer, lymphoma, or leukemia) and systemic lupus erythematosus, but there are no indications of these in this patient. Sore throat is associated with post-streptococcal glomerulonephritis and IgA nephropathy, but these are not relevant to this case.

      Membranous glomerulonephritis is the most common type of glomerulonephritis in adults and is the third leading cause of end-stage renal failure. It typically presents with proteinuria or nephrotic syndrome. A renal biopsy will show a thickened basement membrane with subepithelial electron dense deposits, creating a spike and dome appearance. The condition can be caused by various factors, including infections, malignancy, drugs, autoimmune diseases, and idiopathic reasons.

      Management of membranous glomerulonephritis involves the use of ACE inhibitors or ARBs to reduce proteinuria and improve prognosis. Immunosuppression may be necessary for patients with severe or progressive disease, but many patients spontaneously improve. Corticosteroids alone are not effective, and a combination of corticosteroid and another agent such as cyclophosphamide is often used. Anticoagulation may be considered for high-risk patients.

      The prognosis for membranous glomerulonephritis follows the rule of thirds: one-third of patients experience spontaneous remission, one-third remain proteinuric, and one-third develop end-stage renal failure. Good prognostic factors include female sex, young age at presentation, and asymptomatic proteinuria of a modest degree at the time of diagnosis.

    • This question is part of the following fields:

      • Renal System
      33.7
      Seconds
  • Question 13 - A 58-year-old man is diagnosed with benign prostatic hyperplasia and is prescribed finasteride....

    Correct

    • A 58-year-old man is diagnosed with benign prostatic hyperplasia and is prescribed finasteride. He is informed that the drug works by inhibiting the conversion of testosterone to dihydrotestosterone, thereby preventing further enlargement of the prostate. What is the mechanism of action of finasteride?

      Your Answer: 5-alpha reductase inhibitor

      Explanation:

      The enzyme 5-alpha-reductase is responsible for converting testosterone into dihydrotestosterone (DHT) in the testes and prostate. DHT is a more active form of testosterone. Finasteride is a medication that inhibits 5-alpha-reductase, preventing the conversion of testosterone to DHT. This can help prevent further growth of the prostate and is why finasteride is used clinically.

      Alpha-1 agonist is an incorrect answer as it refers to adrenergic receptors and does not affect the conversion of testosterone to DHT. These drugs are used for benign prostate hyperplasia to relax smooth muscles in the bladder, reducing urinary symptoms. Tamsulosin is an example of an alpha-1 agonist.

      Androgen antagonist is also incorrect as these drugs block the action of testosterone and DHT by preventing their attachment to receptors. They do not affect the conversion of testosterone to DHT.

      Gonadotrophin-releasing hormone modulators are also an incorrect answer. These drugs affect the hypothalamus and the production of gonadotrophs, such as luteinizing hormone. They do not affect the conversion of testosterone to DHT.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      13.9
      Seconds
  • Question 14 - A 72-year-old man visits his GP complaining of hesitancy, frequency, poor flow, and...

    Correct

    • A 72-year-old man visits his GP complaining of hesitancy, frequency, poor flow, and incomplete emptying for the past 8 months. During the examination, the GP discovers a hard, craggy, and enlarged prostate on one side. The GP urgently refers the patient to a urologist within 2 weeks and orders a prostate-specific antigen (PSA) test.

      Upon seeing the urologist, the patient is informed that his PSA level is 22ng/ml. The urologist repeats the digital rectal examination and requests a multiparametric MRI to confirm the diagnosis. The urologist prescribes medication to the patient, explaining that it will initially cause a flare of tumor growth before shrinking.

      What type of medication is the urologist describing that will cause this initial flare of tumor growth?

      Your Answer: Gonadotropin-releasing hormone agonists

      Explanation:

      Prostate cancer management involves inhibiting or down-regulating hormones involved in the hypothalamic-pituitary-gonadal axis at different stages to prevent tumour growth. Testosterone, converted to dihydrotestosterone (DHT) in the prostate, causes growth and proliferation of prostate cells.

      Gonadotropin-releasing hormone (GnRH) agonists like goserelin suppress both GnRH and LH production, causing downregulation of GnRH and LH after an initial stimulatory effect that can cause a flare in tumour growth. GnRH agonists outmatch the body’s natural production rhythm, leading to reduced LH and GnRH production.

      GnRH antagonists like abarelix suppress LH production by the anterior pituitary, preventing stimulation of testosterone production in the testes and reducing DHT production. This can cause the prostate to shrink instead of growing.

      Anti-androgens like bicalutamide directly block the actions of testosterone and DHT within the cells of the prostate, preventing growth. They are often prescribed alongside GnRH agonists to prevent the flare in tumour growth.

      5-a-reductase inhibitors, also known as DHT-blockers, shrink the prostate by stopping the conversion of testosterone to DHT. This prevents tumour growth and overall shrinkage of the prostate, but does not cause initial tumour growth.

      Prostate cancer management varies depending on the stage of the disease and the patient’s life expectancy and preferences. For localized prostate cancer (T1/T2), treatment options include active monitoring, watchful waiting, radical prostatectomy, and radiotherapy (external beam and brachytherapy). For localized advanced prostate cancer (T3/T4), options include hormonal therapy, radical prostatectomy, and radiotherapy. Patients may develop proctitis and are at increased risk of bladder, colon, and rectal cancer following radiotherapy for prostate cancer.

      In cases of metastatic prostate cancer, reducing androgen levels is a key aim of treatment. A combination of approaches is often used, including anti-androgen therapy, synthetic GnRH agonist or antagonists, bicalutamide, cyproterone acetate, abiraterone, and bilateral orchidectomy. GnRH agonists, such as Goserelin (Zoladex), initially cause a rise in testosterone levels before falling to castration levels. To prevent a rise in testosterone, anti-androgens are often used to cover the initial therapy. GnRH antagonists, such as degarelix, are being evaluated to suppress testosterone while avoiding the flare phenomenon. Chemotherapy with docetaxel is also an option for the treatment of hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after androgen deprivation therapy has failed, and before chemotherapy is indicated.

    • This question is part of the following fields:

      • Renal System
      35.7
      Seconds
  • Question 15 - A 30-year-old man presents to the emergency department with complaints of abdominal pain,...

    Incorrect

    • A 30-year-old man presents to the emergency department with complaints of abdominal pain, nausea, and vomiting for a few hours. He has a history of type 1 diabetes mellitus, which is managed with insulin. He admits to running out of his insulin a few days ago. On examination, his temperature is 37.8ºC, pulse is 120/min, respirations are 25/min, and blood pressure is 100/70 mmHg. Dry mucous membranes are noted, and he has a fruity odour on his breath.

      The following laboratory results are obtained:

      Hb 142 g/L Male: (135-180)
      Female: (115 - 160)
      Platelets 250 * 109/L (150 - 400)
      WBC 11.2 * 109/L (4.0 - 11.0)
      Na+ 138 mmol/L (135 - 145)
      K+ 5.2 mmol/L (3.5 - 5.0)
      Urea 2.8 mmol/L (2.0 - 7.0)
      Creatinine 110 µmol/L (55 - 120)
      Glucose 28 mmol/L (4 - 7)

      Which of the following laboratory findings is most likely to be seen in this patient?

      Your Answer: PH 7.4; pCO2 3.3 kPa; Anion Gap 23

      Correct Answer: PH 7.1; pCO2 2.3 kPa; Anion Gap 21

      Explanation:

      The patient is experiencing diabetic ketoacidosis, which results in a raised anion gap metabolic acidosis. To determine the correct answer, we must eliminate options with a normal or raised pH (7.4 and 7.5), as well as those with respiratory acidosis (as the patient has an increased respiratory rate and should have a low pCO2). The anion gap is also a crucial factor, with a normal range of 3 to 16. Therefore, the correct option is the one with an anion gap of 21.

      Understanding Metabolic Acidosis

      Metabolic acidosis is a condition that can be classified based on the anion gap, which is calculated by subtracting the sum of chloride and bicarbonate from the sum of sodium and potassium. The normal range for anion gap is 10-18 mmol/L. If a question provides the chloride level, it may be an indication to calculate the anion gap.

      Hyperchloraemic metabolic acidosis is a type of metabolic acidosis with a normal anion gap. It can be caused by gastrointestinal bicarbonate loss, prolonged diarrhea, ureterosigmoidostomy, fistula, renal tubular acidosis, drugs like acetazolamide, ammonium chloride injection, and Addison’s disease. On the other hand, raised anion gap metabolic acidosis is caused by lactate, ketones, urate, acid poisoning, and other factors.

      Lactic acidosis is a type of metabolic acidosis that is caused by high lactate levels. It can be further classified into two types: lactic acidosis type A, which is caused by sepsis, shock, hypoxia, and burns, and lactic acidosis type B, which is caused by metformin. Understanding the different types and causes of metabolic acidosis is important in diagnosing and treating the condition.

    • This question is part of the following fields:

      • Renal System
      47.2
      Seconds
  • Question 16 - A 75-year-old male is brought to the emergency department after falling at home....

    Correct

    • A 75-year-old male is brought to the emergency department after falling at home. Upon admission, his blood tests reveal a sodium level of 128 mmol/l. Which medication is the most probable cause of this?

      Your Answer: Sertraline

      Explanation:

      Hyponatremia is a common side effect of SSRIs, including Sertraline, which can cause SIADH. However, medications such as Statins, Levothyroxine, and Metformin are not typically linked to hyponatremia.

      SIADH is a condition where the body retains too much water, leading to low sodium levels in the blood. This can be caused by various factors such as malignancy (particularly small cell lung cancer), neurological conditions like stroke or meningitis, infections like tuberculosis or pneumonia, certain drugs like sulfonylureas and SSRIs, and other factors like positive end-expiratory pressure and porphyrias. Treatment involves slowly correcting the sodium levels, restricting fluid intake, and using medications like demeclocycline or ADH receptor antagonists. It is important to correct the sodium levels slowly to avoid complications like central pontine myelinolysis.

    • This question is part of the following fields:

      • Renal System
      24.3
      Seconds
  • Question 17 - A 65-year-old man is undergoing assessment for polycythemia and has no history of...

    Correct

    • A 65-year-old man is undergoing assessment for polycythemia and has no history of smoking. What type of solid-organ cancer could be a possible cause?

      Your Answer: Renal cell carcinoma

      Explanation:

      Renal cell carcinoma has the potential to secrete various hormones such as erythropoietin, PTHrP, renin, or ACTH. This can lead to secondary polycythemia, hypercalcemia, or other related conditions. On the other hand, small cell lung cancer can cause ectopic secretion of ACTH or ADH, but not erythropoietin. Pituitary tumors, on the other hand, may secrete prolactin.

      Renal cell cancer, also known as hypernephroma, is a primary renal neoplasm that accounts for 85% of cases. It originates from the proximal renal tubular epithelium and is commonly associated with smoking and conditions such as von Hippel-Lindau syndrome and tuberous sclerosis. The clear cell subtype is the most prevalent, comprising 75-85% of tumors.

      Renal cell cancer is more common in middle-aged men and may present with classical symptoms such as haematuria, loin pain, and an abdominal mass. Other features include endocrine effects, such as the secretion of erythropoietin, parathyroid hormone-related protein, renin, and ACTH. Metastases are present in 25% of cases at presentation, and paraneoplastic syndromes such as Stauffer syndrome may also occur.

      The T category criteria for renal cell cancer are based on tumor size and extent of invasion. Management options include partial or total nephrectomy, depending on the tumor size and extent of disease. Patients with a T1 tumor are typically offered a partial nephrectomy, while alpha-interferon and interleukin-2 may be used to reduce tumor size and treat metastases. Receptor tyrosine kinase inhibitors such as sorafenib and sunitinib have shown superior efficacy compared to interferon-alpha.

      In summary, renal cell cancer is a common primary renal neoplasm that is associated with various risk factors and may present with classical symptoms and endocrine effects. Management options depend on the extent of disease and may include surgery and targeted therapies.

    • This question is part of the following fields:

      • Renal System
      28.1
      Seconds
  • Question 18 - An elderly man of 74 years old complains of symptoms and displays signs...

    Incorrect

    • An elderly man of 74 years old complains of symptoms and displays signs of benign prostatic hyperplasia. Which structure is most likely to be enlarged in his case?

      Your Answer: Posterior lobe of the prostate

      Correct Answer: Median lobe of the prostate

      Explanation:

      Prostate carcinoma commonly develops in the posterior lobe, while BPH often causes enlargement of the median lobe. The anterior lobe, which contains minimal glandular tissue, is rarely affected by enlargement.

      Benign prostatic hyperplasia (BPH) is a common condition that affects older men, with around 50% of 50-year-old men showing evidence of BPH and 30% experiencing symptoms. The risk of BPH increases with age, with around 80% of 80-year-old men having evidence of the condition. Ethnicity also plays a role, with black men having a higher risk than white or Asian men. BPH typically presents with lower urinary tract symptoms (LUTS), which can be categorised into obstructive (voiding) symptoms and irritative (storage) symptoms. Complications of BPH can include urinary tract infections, retention, and obstructive uropathy.

      Assessment of BPH may involve dipstick urine testing, U&Es, and PSA testing if obstructive symptoms are present or if the patient is concerned about prostate cancer. A urinary frequency-volume chart and the International Prostate Symptom Score (IPSS) can also be used to assess the severity of LUTS and their impact on quality of life. Management options for BPH include watchful waiting, alpha-1 antagonists, 5 alpha-reductase inhibitors, combination therapy, and surgery. Alpha-1 antagonists are considered first-line for moderate-to-severe voiding symptoms and can improve symptoms in around 70% of men, but may cause adverse effects such as dizziness and dry mouth. 5 alpha-reductase inhibitors may slow disease progression and reduce prostate volume, but can cause adverse effects such as erectile dysfunction and reduced libido. Combination therapy may be used for bothersome moderate-to-severe voiding symptoms and prostatic enlargement. Antimuscarinic drugs may be tried for persistent storage symptoms. Surgery, such as transurethral resection of the prostate (TURP), may also be an option.

    • This question is part of the following fields:

      • Renal System
      18.4
      Seconds
  • Question 19 - A 29-year-old female patient complains of dysuria and frequent urination for the past...

    Incorrect

    • A 29-year-old female patient complains of dysuria and frequent urination for the past 3 days. She denies experiencing any vaginal discharge or heavy menstrual bleeding. Upon urine dipstick examination, leukocytes and nitrites are detected. A urine culture reveals the presence of a urease-producing bacteria identified as Proteus mirabilis. The patient is prescribed antibiotics for treatment.

      What type of renal stones are patients at risk for developing with chronic and recurrent infections caused by this bacteria?

      Your Answer: Calcium phosphate

      Correct Answer: Ammonium magnesium phosphate (struvite)

      Explanation:

      The formation of kidney stones is a common condition that involves the accumulation of mineral deposits in the kidneys. This condition is influenced by various risk factors such as low urine volume, dry weather conditions, and acidic pH levels. It is also closely linked to hyperuricemia, which is commonly associated with gout, as well as diseases that involve high cell turnover, such as leukemia.

      Renal stones can be classified into different types based on their composition. Calcium oxalate stones are the most common, accounting for 85% of all calculi. These stones are formed due to hypercalciuria, hyperoxaluria, and hypocitraturia. They are radio-opaque and may also bind with uric acid stones. Cystine stones are rare and occur due to an inherited recessive disorder of transmembrane cystine transport. Uric acid stones are formed due to purine metabolism and may precipitate when urinary pH is low. Calcium phosphate stones are associated with renal tubular acidosis and high urinary pH. Struvite stones are formed from magnesium, ammonium, and phosphate and are associated with chronic infections. The pH of urine can help determine the type of stone present, with calcium phosphate stones forming in normal to alkaline urine, uric acid stones forming in acidic urine, and struvate stones forming in alkaline urine. Cystine stones form in normal urine pH.

    • This question is part of the following fields:

      • Renal System
      17.2
      Seconds
  • Question 20 - A 75-year-old man is brought to the Emergency Department after he was found...

    Correct

    • A 75-year-old man is brought to the Emergency Department after he was found on the floor at home following a fall. He reports being immobile and staying on the floor overnight, but was otherwise healthy with no chest pain or dizziness. He is slightly confused and dehydrated, and complains of hip pain. However, further investigation reveals no fracture, but elevated levels of creatine kinase, creatinine, and urea. He takes simvastatin and amlodipine for hypercholesterolaemia and hypertension.

      What is the most probable cause of this sudden kidney injury?

      Your Answer: Acute tubular necrosis

      Explanation:

      The most common cause of acute kidney injury is acute tubular necrosis, which may be caused by various factors. In this case, the patient is likely to have rhabdomyolysis due to muscle damage from a fall. The release of myoglobin from damaged muscles can cause renal ischaemia, leading to acute tubular necrosis. Treatment involves addressing the cause of renal ischaemia and administering intravenous fluids to manage dehydration.

      While statins can cause rhabdomyolysis, the patient’s history suggests direct muscle trauma as the cause. Malignancy is a possibility, but the absence of prior symptoms and sudden onset of symptoms after a fall make it less likely than muscle trauma.

      IgA nephropathy typically presents with haematuria following an upper respiratory tract infection, but this is not relevant to the current case.

      Acute tubular necrosis (ATN) is a common cause of acute kidney injury (AKI) that affects the functioning of the kidney by causing necrosis of renal tubular epithelial cells. The condition is reversible in its early stages if the cause is removed. The two main causes of ATN are ischaemia and nephrotoxins, which can be caused by shock, sepsis, aminoglycosides, myoglobin secondary to rhabdomyolysis, radiocontrast agents, and lead. The features of ATN include raised urea, creatinine, and potassium levels, as well as muddy brown casts in the urine. Histopathological features include tubular epithelium necrosis, dilatation of the tubules, and necrotic cells obstructing the tubule lumen. ATN has three phases: the oliguric phase, the polyuric phase, and the recovery phase.

    • This question is part of the following fields:

      • Renal System
      18.1
      Seconds
  • Question 21 - A 5-year-old boy presents with pain in the abdomen and painless blood in...

    Correct

    • A 5-year-old boy presents with pain in the abdomen and painless blood in the urine. Upon examination, a lump is felt in the left flank. What is the probable diagnosis?

      Your Answer: Wilms' tumour

      Explanation:

      A Wilms’ tumour is the most prevalent type of renal carcinoma in children, making renal cell carcinoma an incorrect diagnosis. Ulcerative colitis is rare in children of this age, and the other potential diagnoses are unlikely based on the child’s symptoms.

      Wilms’ Tumour: A Common Childhood Malignancy

      Wilms’ tumour, also known as nephroblastoma, is a prevalent type of cancer in children, with a median age of diagnosis at 3 years old. It is often associated with Beckwith-Wiedemann syndrome, hemihypertrophy, and a loss-of-function mutation in the WT1 gene on chromosome 11. The most common presenting feature is an abdominal mass, which is usually painless, but other symptoms such as haematuria, flank pain, anorexia, and fever may also occur. In 95% of cases, the tumour is unilateral, and metastases are found in 20% of patients, most commonly in the lungs.

      If a child presents with an unexplained enlarged abdominal mass, it is crucial to arrange a paediatric review within 48 hours to rule out Wilms’ tumour. The management of this cancer typically involves nephrectomy, chemotherapy, and radiotherapy if the disease is advanced. Fortunately, the prognosis for Wilms’ tumour is good, with an 80% cure rate.

      Histologically, Wilms’ tumour is characterized by epithelial tubules, areas of necrosis, immature glomerular structures, stroma with spindle cells, and small cell blastomatous tissues resembling the metanephric blastema. Overall, early detection and prompt treatment are essential for a successful outcome in children with Wilms’ tumour.

    • This question is part of the following fields:

      • Renal System
      10.5
      Seconds
  • Question 22 - A 7-year-old child presents with subepithelial humps at the glomerular basement membrane on...

    Incorrect

    • A 7-year-old child presents with subepithelial humps at the glomerular basement membrane on electron microscopy. The child has a history of recent upper respiratory tract infection and no significant past medical or family history. They are not taking any regular medications.

      What is the most probable diagnosis?

      Your Answer: IgA nephropathy

      Correct Answer: Post-streptococcal glomerulonephritis

      Explanation:

      Post-streptococcal glomerulonephritis is a condition that typically occurs 7-14 days after an infection caused by group A beta-haemolytic Streptococcus, usually Streptococcus pyogenes. It is more common in young children and is caused by the deposition of immune complexes (IgG, IgM, and C3) in the glomeruli. Symptoms include headache, malaise, visible haematuria, proteinuria, oedema, hypertension, and oliguria. Blood tests may show a raised anti-streptolysin O titre and low C3, which confirms a recent streptococcal infection.

      It is important to note that IgA nephropathy and post-streptococcal glomerulonephritis are often confused as they both can cause renal disease following an upper respiratory tract infection. Renal biopsy features of post-streptococcal glomerulonephritis include acute, diffuse proliferative glomerulonephritis with endothelial proliferation and neutrophils. Electron microscopy may show subepithelial ‘humps’ caused by lumpy immune complex deposits, while immunofluorescence may show a granular or ‘starry sky’ appearance.

      Despite its severity, post-streptococcal glomerulonephritis carries a good prognosis.

    • This question is part of the following fields:

      • Renal System
      16.5
      Seconds
  • Question 23 - An 80-year-old man is undergoing investigation for haematuria, with no other urinary symptoms...

    Incorrect

    • An 80-year-old man is undergoing investigation for haematuria, with no other urinary symptoms reported. He has no significant medical history and previously worked in the textiles industry. During a flexible cystoscopy, a sizable mass is discovered in the lower part of his bladder, raising suspicion of bladder cancer. A PET scan is planned to check for any nodal metastasis. Which lymph nodes are most likely to be affected?

      Your Answer: Para-aortic lymph nodes

      Correct Answer: External and internal iliac lymph nodes

      Explanation:

      The bladder’s lymphatic drainage is mainly to the external and internal iliac nodes. A man with haematuria and a history of working with dye is found to have a bladder tumour. To stage the tumour, nodal metastasis should be investigated, and the correct lymph nodes to check are the external and internal iliac nodes. Other options such as deep inguinal, para-aortic, and superficial inguinal nodes are incorrect.

      Bladder Anatomy and Innervation

      The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.

    • This question is part of the following fields:

      • Renal System
      18.1
      Seconds
  • Question 24 - A 26-year-old man is involved in a car crash and develops oliguria with...

    Incorrect

    • A 26-year-old man is involved in a car crash and develops oliguria with worsening renal function. How can acute tubular necrosis be differentiated from pre-renal azotemia in this case?

      Your Answer: Increased urine specific gravity

      Correct Answer: No response to intravenous fluids

      Explanation:

      Inability to respond to intravenous fluids is observed in acute tubular necrosis due to the damage originating from the renal system itself, rather than being caused by a reduction in volume.

      Understanding the Difference between Acute Tubular Necrosis and Prerenal Uraemia

      Acute kidney injury can be caused by various factors, including prerenal uraemia and acute tubular necrosis. It is important to differentiate between the two to determine the appropriate treatment. Prerenal uraemia occurs when the kidneys hold on to sodium to preserve volume, leading to decreased blood flow to the kidneys. On the other hand, acute tubular necrosis is caused by damage to the kidney tubules, which can be due to various factors such as toxins, infections, or ischemia.

      To differentiate between the two, several factors can be considered. In prerenal uraemia, the urine sodium level is typically less than 20 mmol/L, while in acute tubular necrosis, it is usually greater than 40 mmol/L. The urine osmolality is also higher in prerenal uraemia, typically above 500 mOsm/kg, while in acute tubular necrosis, it is usually below 350 mOsm/kg. The fractional sodium excretion is less than 1% in prerenal uraemia, while it is greater than 1% in acute tubular necrosis. Additionally, the response to fluid challenge is typically good in prerenal uraemia, while it is poor in acute tubular necrosis.

      Other factors that can help differentiate between the two include the serum urea:creatinine ratio, fractional urea excretion, urine:plasma osmolality, urine:plasma urea, specific gravity, and urine sediment. By considering these factors, healthcare professionals can accurately diagnose and treat acute kidney injury.

    • This question is part of the following fields:

      • Renal System
      76.9
      Seconds
  • Question 25 - A 9-year-old girl was brought to the clinic by her father who has...

    Correct

    • A 9-year-old girl was brought to the clinic by her father who has been worried about increasing 'swelling around her eyes and legs' over the past few weeks. She is otherwise healthy. Upon further inquiry, her father reports no blood in her urine but noticed that it is more foamy than usual. A urinalysis shows severe proteinuria. The girl is referred for a kidney biopsy and eventually started on prednisolone based on the suspected diagnosis. What is the most probable result of the biopsy?

      Your Answer: Podocyte effacement with electron microscopy

      Explanation:

      The patient’s symptoms suggest that they may be suffering from nephrotic syndrome, which is characterized by periorbital and peripheral edema, as well as severe proteinuria. In young children, the most common cause of nephrotic syndrome is Minimal Change Disease, which can be identified through podocyte effacement on biopsy using electron microscopy. Fortunately, most cases of this disease in young children respond well to steroid treatment. Other potential diagnoses include membranous glomerulonephritis, Goodpasture syndrome, and focal segmental glomerulosclerosis.

      Minimal change disease is a condition that typically presents as nephrotic syndrome, with children accounting for 75% of cases and adults accounting for 25%. While most cases are idiopathic, a cause can be found in around 10-20% of cases, such as drugs like NSAIDs and rifampicin, Hodgkin’s lymphoma, thymoma, or infectious mononucleosis. The pathophysiology of the disease involves T-cell and cytokine-mediated damage to the glomerular basement membrane, resulting in polyanion loss and a reduction of electrostatic charge, which increases glomerular permeability to serum albumin.

      The features of minimal change disease include nephrotic syndrome, normotension (hypertension is rare), and highly selective proteinuria, where only intermediate-sized proteins like albumin and transferrin leak through the glomerulus. Renal biopsy shows normal glomeruli on light microscopy, while electron microscopy shows fusion of podocytes and effacement of foot processes.

      Management of minimal change disease involves oral corticosteroids, which are effective in 80% of cases. For steroid-resistant cases, cyclophosphamide is the next step. The prognosis for the disease is generally good, although relapse is common. Roughly one-third of patients have just one episode, one-third have infrequent relapses, and one-third have frequent relapses that stop before adulthood.

    • This question is part of the following fields:

      • Renal System
      35.2
      Seconds
  • Question 26 - A 49-year-old man with a history of chronic alcohol abuse presents with abdominal...

    Correct

    • A 49-year-old man with a history of chronic alcohol abuse presents with abdominal distension and is diagnosed with decompensated alcoholic liver disease with ascites. The consultant initiates treatment with spironolactone to aid in the management of his ascites.

      What is the mode of action of spironolactone?

      Your Answer: Inhibition of the mineralocorticoid receptor in the cortical collecting ducts

      Explanation:

      Aldosterone antagonists function as diuretics by targeting the cortical collecting ducts.

      By inhibiting the mineralocorticoid receptor in the cortical collecting ducts, spironolactone acts as an aldosterone antagonist.

      Loop diuretics like furosemide work by blocking the sodium/potassium/chloride transporter in the loop of Henle.

      Thiazide diuretics, such as bendroflumethiazide, block the sodium/chloride transporter in the distal convoluted tubules.

      Carbonic anhydrase inhibitors, like dorzolamide, act on the proximal tubules.

      Amiloride inhibits the epithelial sodium transporter in the distal convoluted tubules.

      Spironolactone is a medication that works as an aldosterone antagonist in the cortical collecting duct. It is used to treat various conditions such as ascites, hypertension, heart failure, nephrotic syndrome, and Conn’s syndrome. In patients with cirrhosis, spironolactone is often prescribed in relatively large doses of 100 or 200 mg to counteract secondary hyperaldosteronism. It is also used as a NICE ‘step 4’ treatment for hypertension. In addition, spironolactone has been shown to reduce all-cause mortality in patients with NYHA III + IV heart failure who are already taking an ACE inhibitor, according to the RALES study.

      However, spironolactone can cause adverse effects such as hyperkalaemia and gynaecomastia, although the latter is less common with eplerenone. It is important to monitor potassium levels in patients taking spironolactone to prevent hyperkalaemia, which can lead to serious complications such as cardiac arrhythmias. Overall, spironolactone is a useful medication for treating various conditions, but its potential adverse effects should be carefully considered and monitored.

    • This question is part of the following fields:

      • Renal System
      30
      Seconds
  • Question 27 - A 75-year-old woman has been diagnosed with hyperaldosteronism. What is the source of...

    Correct

    • A 75-year-old woman has been diagnosed with hyperaldosteronism. What is the source of aldosterone release?

      Your Answer: Zona glomerulosa of the adrenal cortex

      Explanation:

      The production of aldosterone takes place in the zona glomerulosa of the adrenal cortex and its function is to preserve water and sodium.

      Aldosterone is a hormone that is primarily produced by the adrenal cortex in the zona glomerulosa. Its main function is to stimulate the reabsorption of sodium from the distal tubules, which results in the excretion of potassium. It is regulated by various factors such as angiotensin II, potassium, and ACTH, which increase its secretion. However, when there is an overproduction of aldosterone, it can lead to primary hyperaldosteronism, which is a common cause of secondary hypertension. This condition can be caused by an adrenal adenoma, which is also known as Conn’s syndrome. It is important to note that spironolactone, an aldosterone antagonist, can cause hyperkalemia.

    • This question is part of the following fields:

      • Renal System
      17.8
      Seconds
  • Question 28 - A 55-year-old woman who underwent laparoscopic cholecystectomy is being evaluated on postoperative day...

    Incorrect

    • A 55-year-old woman who underwent laparoscopic cholecystectomy is being evaluated on postoperative day 2. She reports multiple episodes of vomiting and passing urine only once since the operation. Her medical history includes poorly controlled hypertension on dual therapy. She is currently taking fenoldopam, ACE inhibitors, calcium channel blockers, atorvastatin, and paracetamol. On physical examination, she has dry mucous membranes and a BMI of 31 kg/m². Her vital signs show a mean arterial pressure of 80 mmHg and a heart rate of 110 beats per minute. Laboratory results reveal:

      Na+ 130 mmol/L (135 - 145)
      K+ 5.1 mmol/L (3.5 - 5.0)
      Creatinine 160 µmol/L (55 - 120)

      What is the most important medication that should be discontinued in this patient?

      Your Answer: Fenoldopam

      Correct Answer: ACE inhibitors

      Explanation:

      In cases of acute kidney injury (AKI), it is crucial to identify and treat the underlying cause. However, it is important to note that ACE inhibitors should be discontinued as they can worsen renal function by causing efferent arteriolar vasodilation, leading to a decrease in GFR. On the other hand, atorvastatin should not be stopped as it does not accumulate and worsen renal function, but frequent monitoring is necessary. If AKI is caused by rhabdomyolysis, then statins should be immediately discontinued. Calcium channel blockers do not exacerbate renal impairment, but it is advisable to reduce the dose and withhold them if clinical signs appear. Fenoldopam, on the other hand, does not impair kidney function but rather increases blood flow to the renal cortex and medullary regions by decreasing systemic vascular resistance.

      Acute kidney injury (AKI) is a condition where there is a reduction in renal function following an insult to the kidneys. It was previously known as acute renal failure and can result in long-term impaired kidney function or even death. AKI can be caused by prerenal, intrinsic, or postrenal factors. Patients with chronic kidney disease, other organ failure/chronic disease, a history of AKI, or who have used drugs with nephrotoxic potential are at an increased risk of developing AKI. To prevent AKI, patients at risk may be given IV fluids or have certain medications temporarily stopped.

      The kidneys are responsible for maintaining fluid balance and homeostasis, so a reduced urine output or fluid overload may indicate AKI. Symptoms may not be present in early stages, but as renal failure progresses, patients may experience arrhythmias, pulmonary and peripheral edema, or features of uraemia. Blood tests such as urea and electrolytes can be used to detect AKI, and urinalysis and imaging may also be necessary.

      Management of AKI is largely supportive, with careful fluid balance and medication review. Loop diuretics and low-dose dopamine are not recommended, but hyperkalaemia needs prompt treatment to avoid life-threatening arrhythmias. Renal replacement therapy may be necessary in severe cases. Patients with suspected AKI secondary to urinary obstruction require prompt review by a urologist, and specialist input from a nephrologist is required for cases where the cause is unknown or the AKI is severe.

    • This question is part of the following fields:

      • Renal System
      101.9
      Seconds
  • Question 29 - A 38-year-old female visits her doctor complaining of tingling sensations around her mouth...

    Correct

    • A 38-year-old female visits her doctor complaining of tingling sensations around her mouth and frequent muscle cramps. During the blood pressure check, her wrist and fingers start to cramp and flex. Despite these symptoms, she appears to be in good health.

      What condition is the most probable diagnosis?

      Your Answer: Hypocalcaemia

      Explanation:

      Hypocalcaemia is characterized by perioral paraesthesia, cramps, tetany, and convulsions. The female in this scenario is displaying these symptoms, along with a positive Trousseau’s sign and potentially a positive Chvostek’s sign. Hypocalcaemia is commonly caused by hyperparathyroidism, vitamin D deficiency, or phosphate infusions.

      Hyperkalaemia is when there is an elevated level of potassium in the blood, which can be caused by chronic kidney disease, dehydration, and certain medications such as spironolactone. Symptoms may include muscle weakness, heart palpitations, and nausea and vomiting.

      Hypermagnesaemia is rare and can cause decreased respiratory rate, muscle weakness, and decreased reflexes. It may be caused by renal failure, excessive dietary intake, or increased cell destruction.

      Hypokalaemia is relatively common and can cause weakness, fatigue, and muscle cramps. It may be caused by diuretic use, low dietary intake, or vomiting.

      Hyponatraemia may also cause cramps, but typically presents with nausea and vomiting, fatigue, confusion, and in severe cases, seizures or coma. Causes may include syndrome of inappropriate ADH release (SIADH), excessive fluid intake, and certain medications such as diuretics, SSRIs, and antipsychotics.

      Hypocalcaemia: Symptoms and Signs

      Hypocalcaemia is a condition characterized by low levels of calcium in the blood. As calcium is essential for proper muscle and nerve function, many of the symptoms and signs of hypocalcaemia are related to neuromuscular excitability. The most common features of hypocalcaemia include muscle twitching, cramping, and spasms, as well as perioral paraesthesia. In chronic cases, patients may experience depression and cataracts. An electrocardiogram (ECG) may show a prolonged QT interval.

      Two specific signs that are commonly used to diagnose hypocalcaemia are Trousseau’s sign and Chvostek’s sign. Trousseau’s sign is observed when the brachial artery is occluded by inflating the blood pressure cuff and maintaining pressure above systolic. This causes wrist flexion and fingers to be drawn together, which is seen in around 95% of patients with hypocalcaemia and around 1% of normocalcaemic people. Chvostek’s sign is observed when tapping over the parotid gland causes facial muscles to twitch. This sign is seen in around 70% of patients with hypocalcaemia and around 10% of normocalcaemic people. Overall, hypocalcaemia can cause a range of symptoms and signs that are related to neuromuscular excitability, and specific diagnostic signs can be used to confirm the diagnosis.

    • This question is part of the following fields:

      • Renal System
      11.3
      Seconds
  • Question 30 - A 30-year-old male presents to his GP with concerns about lumps on his...

    Incorrect

    • A 30-year-old male presents to his GP with concerns about lumps on his hands. He recalls his father having similar spots and is worried about their appearance after comments from his colleagues. On examination, soft yellow papules are found on the base of the 1st and 3rd digit. A blood test reveals elevated cholesterol and triglycerides, with low HDL and high LDL. What is the underlying genetic mutation causing this patient's lipid transport defect?

      Your Answer: Apolipoprotein C (Apo-C)

      Correct Answer: Apolipoprotein E (Apo-E)

      Explanation:

      Hyperlipidaemia Classification

      Hyperlipidaemia is a condition characterized by high levels of lipids (fats) in the blood. The Fredrickson classification system was previously used to categorize hyperlipidaemia based on the type of lipid and genetic factors. However, it is now being replaced by a classification system based solely on genetics.

      The Fredrickson classification system included five types of hyperlipidaemia, each with a specific genetic cause. Type I was caused by lipoprotein lipase deficiency or apolipoprotein C-II deficiency, while type IIa was caused by familial hypercholesterolaemia. Type IIb was caused by familial combined hyperlipidaemia, and type III was caused by remnant hyperlipidaemia or apo-E2 homozygosity. Type IV was caused by familial hypertriglyceridaemia or familial combined hyperlipidaemia, and type V was caused by familial hypertriglyceridaemia.

      Hyperlipidaemia can primarily be caused by raised cholesterol or raised triglycerides. Familial hypercholesterolaemia and polygenic hypercholesterolaemia are primarily caused by raised cholesterol, while familial hypertriglyceridaemia and lipoprotein lipase deficiency or apolipoprotein C-II deficiency are primarily caused by raised triglycerides. Mixed hyperlipidaemia disorders, such as familial combined hyperlipidaemia and remnant hyperlipidaemia, involve a combination of raised cholesterol and raised triglycerides.

    • This question is part of the following fields:

      • Renal System
      20.2
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Renal System (16/30) 53%
Passmed