00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - Which of the following symptoms is not associated with Gerstmann's syndrome? ...

    Correct

    • Which of the following symptoms is not associated with Gerstmann's syndrome?

      Your Answer: Prosopagnosia

      Explanation:

      Gerstmann’s Syndrome: Symptoms and Brain Lesions

      Gerstmann’s syndrome is a condition that is characterized by several symptoms, including dyscalculia, dysgraphia, finger agnosia, and right-left disorientation. Patients with this syndrome have been found to have lesions in areas such as the left frontal posterior, left parietal, temporal, and occipital lobes. The left angular gyrus, which is located at the junction of the temporal, occipital, and parietal lobes, seems to be the main area of overlap. Although the function of the angular gyrus is not well understood, it is believed to be involved in various functions such as calculation, spatial reasoning, understanding of ordinal concepts, and comprehension of metaphors.

    • This question is part of the following fields:

      • Neurosciences
      13.2
      Seconds
  • Question 2 - Which condition is most likely to exhibit a hyperkinetic gait? ...

    Correct

    • Which condition is most likely to exhibit a hyperkinetic gait?

      Your Answer: Sydenham chorea

      Explanation:

      Gait disorders can be caused by a variety of conditions, including neurological, muscular, and structural abnormalities. One common gait disorder is hemiplegic gait, which is characterized by unilateral weakness on the affected side, with the arm flexed, adducted, and internally rotated, and the leg on the same side in extension with plantar flexion of the foot and toes. When walking, the patient may hold their arm to one side and drag their affected leg in a semicircle (circumduction) due to weakness of leg flexors and extended foot. Hemiplegic gait is often seen in patients who have suffered a stroke.

      Other gait disorders include ataxic gait, spastic gait, and steppage gait, each with their own unique characteristics and associated conditions. Accurate diagnosis and treatment of gait disorders is important for improving mobility and quality of life for affected individuals.

    • This question is part of the following fields:

      • Neurosciences
      7.5
      Seconds
  • Question 3 - Which type of axon is responsible for the intense and sudden pain experienced...

    Incorrect

    • Which type of axon is responsible for the intense and sudden pain experienced during an injury?

      Your Answer: None of the above

      Correct Answer: A-delta

      Explanation:

      Primary Afferent Axons: Conveying Information about Touch and Pain

      Primary afferent axons play a crucial role in conveying information about touch and pain from the surface of the body to the spinal cord and brain. These axons can be classified into four types based on their functions: A-alpha (proprioception), A-beta (touch), A-delta (pain and temperature), and C (pain, temperature, and itch). While all A axons are myelinated, C fibers are unmyelinated.

      A-delta fibers are responsible for the sharp initial pain, while C fibers are responsible for the slow, dull, longer-lasting second pain. Understanding the different types of primary afferent axons and their functions is essential in diagnosing and treating various sensory disorders.

    • This question is part of the following fields:

      • Neurosciences
      7.7
      Seconds
  • Question 4 - Which receptor is most likely to cause a feeling of nausea when stimulated?...

    Correct

    • Which receptor is most likely to cause a feeling of nausea when stimulated?

      Your Answer: 5HT-3

      Explanation:

      Serotonin (5-hydroxytryptamine, 5-HT) receptors are primarily G protein receptors, except for 5-HT3, which is a ligand-gated receptor. It is important to remember that 5-HT3 is most commonly associated with nausea. Additionally, 5-HT7 is linked to circadian rhythms. The stimulation of 5-HT2 receptors is believed to be responsible for the side effects of insomnia, agitation, and sexual dysfunction that are associated with the use of selective serotonin reuptake inhibitors (SSRIs).

    • This question is part of the following fields:

      • Neurosciences
      3.6
      Seconds
  • Question 5 - Patients who attempt suicide often have decreased levels of which substance in their...

    Correct

    • Patients who attempt suicide often have decreased levels of which substance in their CSF?

      Your Answer: 5-HIAA

      Explanation:

      Depression, suicidality, and aggression have been linked to decreased levels of 5-HIAA in the CSF.

      The Significance of 5-HIAA in Depression and Aggression

      During the 1980s, there was a brief period of interest in 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite. Studies found that up to a third of people with depression had low concentrations of 5-HIAA in their cerebrospinal fluid (CSF), while very few normal controls did. This suggests that 5-HIAA may play a role in depression.

      Furthermore, individuals with low CSF levels of 5-HIAA have been found to respond less effectively to antidepressants and are more likely to commit suicide. This finding has been replicated in multiple studies, indicating the significance of 5-HIAA in depression.

      Low levels of 5-HIAA are also associated with increased levels of aggression. This suggests that 5-HIAA may play a role in regulating aggressive behavior. Overall, the research on 5-HIAA highlights its potential importance in understanding and treating depression and aggression.

    • This question is part of the following fields:

      • Neurosciences
      37.1
      Seconds
  • Question 6 - What is a true statement about microglia? ...

    Incorrect

    • What is a true statement about microglia?

      Your Answer: It is very sensitive to extracellular changes in sodium concentration

      Correct Answer: It is mesodermal in origin

      Explanation:

      Glial Cells: The Support System of the Central Nervous System

      The central nervous system is composed of two basic cell types: neurons and glial cells. Glial cells, also known as support cells, play a crucial role in maintaining the health and function of neurons. There are several types of glial cells, including macroglia (astrocytes and oligodendrocytes), ependymal cells, and microglia.

      Astrocytes are the most abundant type of glial cell and have numerous functions, such as providing structural support, repairing nervous tissue, nourishing neurons, contributing to the blood-brain barrier, and regulating neurotransmission and blood flow. There are two main types of astrocytes: protoplasmic and fibrous.

      Oligodendrocytes are responsible for the formation of myelin sheaths, which insulate and protect axons, allowing for faster and more efficient transmission of nerve impulses.

      Ependymal cells line the ventricular system and are involved in the circulation of cerebrospinal fluid (CSF) and fluid homeostasis in the brain. Specialized ependymal cells called choroid plexus cells produce CSF.

      Microglia are the immune cells of the CNS and play a crucial role in protecting the brain from infection and injury. They also contribute to the maintenance of neuronal health and function.

      In summary, glial cells are essential for the proper functioning of the central nervous system. They provide structural support, nourishment, insulation, and immune defense to neurons, ensuring the health and well-being of the brain and spinal cord.

    • This question is part of the following fields:

      • Neurosciences
      17
      Seconds
  • Question 7 - Who received the Nobel prize for their discovery of dopamine's function as a...

    Incorrect

    • Who received the Nobel prize for their discovery of dopamine's function as a neurotransmitter?

      Your Answer: Charpentier

      Correct Answer: Carlsson

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      6.9
      Seconds
  • Question 8 - Which statement about the anatomy of the basal ganglia is accurate? ...

    Incorrect

    • Which statement about the anatomy of the basal ganglia is accurate?

      Your Answer: The thalamus is part of the basal ganglia

      Correct Answer: The subthalamic nucleus is part of the basal ganglia

      Explanation:

      The Basal Ganglia: Functions and Disorders

      The basal ganglia are a group of subcortical structures that play a crucial role in controlling movement and some cognitive processes. The components of the basal ganglia include the striatum (caudate, putamen, nucleus accumbens), subthalamic nucleus, globus pallidus, and substantia nigra (divided into pars compacta and pars reticulata). The putamen and globus pallidus are collectively referred to as the lenticular nucleus.

      The basal ganglia are connected in a complex loop, with the cortex projecting to the striatum, the striatum to the internal segment of the globus pallidus, the internal segment of the globus pallidus to the thalamus, and the thalamus back to the cortex. This loop is responsible for regulating movement and cognitive processes.

      However, problems with the basal ganglia can lead to several conditions. Huntington’s chorea is caused by degeneration of the caudate nucleus, while Wilson’s disease is characterized by copper deposition in the basal ganglia. Parkinson’s disease is associated with degeneration of the substantia nigra, and hemiballism results from damage to the subthalamic nucleus.

      In summary, the basal ganglia are a crucial part of the brain that regulate movement and some cognitive processes. Disorders of the basal ganglia can lead to significant neurological conditions that affect movement and other functions.

    • This question is part of the following fields:

      • Neurosciences
      52.6
      Seconds
  • Question 9 - Which statement about acetylcholine is incorrect? ...

    Correct

    • Which statement about acetylcholine is incorrect?

      Your Answer: Nicotinic receptors are also stimulated by muscarine

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      13
      Seconds
  • Question 10 - What is the name of the bundle of association fibers that connects the...

    Correct

    • What is the name of the bundle of association fibers that connects the frontal and temporal lobes and is crucial for language repetition?

      Your Answer: Arcuate fasciculus

      Explanation:

      Association fibres refer to axons that link different cortical areas within the same hemisphere of the brain. The middle longitudinal fasciculus is a white matter tract that connects the inferior parietal lobule to the temporal cortices. The uncinate fasciculus is a relatively short pathway that connects the anterior temporal areas to the inferior frontal areas. The inferior longitudinal fasciculus and inferior fronto-occipital fasciculus fibre pathways are believed to connect the occipital cortices to the anterior temporal and inferior frontal cortices (note that the inferior fronto-occipital fasciculus pathway is also known as the inferior occipitofrontal fasciculus). The cingulum is a group of white matter fibres that extend from the cingulate gyrus to the entorhinal cortex, facilitating communication between different parts of the limbic system.

      Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.

    • This question is part of the following fields:

      • Neurosciences
      17
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Neurosciences (6/10) 60%
Passmed