00
Correct
00
Incorrect
00 : 00 : 0 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A baby is born prematurely at 28 weeks, increasing the likelihood of delayed...

    Incorrect

    • A baby is born prematurely at 28 weeks, increasing the likelihood of delayed closure of the ductus venosus. What are the structures that the ductus venosus connects in the fetus?

      Your Answer: Umbilical vein and umbilical artery

      Correct Answer: IVC and umbilical vein

      Explanation:

      During fetal development, the ductus venosus redirects blood flow from the left umbilical vein directly to the inferior vena cava, enabling oxygenated blood from the placenta to bypass the fetal liver. Typically, the ductus closes and becomes the ligamentum venosum between day 3 and 7. However, premature infants are more susceptible to delayed closure.

      During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.

    • This question is part of the following fields:

      • Cardiovascular System
      14.5
      Seconds
  • Question 2 - A 75-year-old collapses at home and is rushed to the Emergency Room but...

    Incorrect

    • A 75-year-old collapses at home and is rushed to the Emergency Room but dies despite resuscitation efforts. He had a myocardial infarction five weeks prior. What histological findings would be expected in his heart?

      Your Answer: Macrophage and T cell infiltration

      Correct Answer: Contracted scar

      Explanation:

      The histology findings of a myocardial infarction (MI) vary depending on the time elapsed since the event. Within the first 24 hours, early coagulative necrosis, neutrophils, wavy fibres, and hypercontraction of myofibrils are observed, which increase the risk of ventricular arrhythmia, heart failure, and cardiogenic shock. Between 1-3 days post-MI, extensive coagulative necrosis and neutrophils are present, which can lead to fibrinous pericarditis. From 3-14 days post-MI, macrophages and granulation tissue are seen at the margins, and there is a high risk of complications such as free wall rupture (resulting in mitral regurgitation), papillary muscle rupture, and left ventricular pseudoaneurysm. Finally, from 2 weeks to several months post-MI, a contracted scar is formed, which is associated with Dressler syndrome, heart failure, arrhythmias, and mural thrombus.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      13.7
      Seconds
  • Question 3 - A 67-year-old man comes to the emergency department with concerns of pain in...

    Correct

    • A 67-year-old man comes to the emergency department with concerns of pain in his right foot. Upon examination, you observe a slow capillary refill and a cold right foot. The patient is unable to move his toes, and the foot is tender. You can detect a pulse behind his medial malleolus and in his popliteal fossa, but there are no pulses in his foot. Which artery is likely affected in this patient's condition?

      Your Answer: Anterior tibial

      Explanation:

      The dorsalis pedis artery in the foot is a continuation of the anterior tibial artery. However, in a patient presenting with acute limb ischemia and an absent dorsalis pedis artery pulse, it is likely that the anterior tibial artery is occluded. This can cause severe ischemia, as evidenced by a cold and tender foot with decreased motor function. The presence of a palpable popliteal pulse suggests that the femoral artery is not occluded. Occlusion of the fibular artery would not typically result in an absent dorsalis pedis pulse, while occlusion of the posterior tibial artery would result in no pulse present posterior to the medial malleolus, where this artery runs.

      The anterior tibial artery starts opposite the lower border of the popliteus muscle and ends in front of the ankle, where it continues as the dorsalis pedis artery. As it descends, it runs along the interosseous membrane, the distal part of the tibia, and the front of the ankle joint. The artery passes between the tendons of the extensor digitorum and extensor hallucis longus muscles as it approaches the ankle. The deep peroneal nerve is closely related to the artery, lying anterior to the middle third of the vessel and lateral to it in the lower third.

    • This question is part of the following fields:

      • Cardiovascular System
      30.1
      Seconds
  • Question 4 - A 68-year-old man is diagnosed with a transient ischaemic attack and started on...

    Incorrect

    • A 68-year-old man is diagnosed with a transient ischaemic attack and started on modified-release dipyridamole as part of combination antiplatelet treatment. He already takes a statin. After a week of treatment, he visits his GP with concerns of the drug's mechanism of action.

      What is the mechanism of action of modified-release dipyridamole?

      Your Answer: Glycoprotein 1b inhibitor

      Correct Answer: Phosphodiesterase inhibitor

      Explanation:

      Dipyridamole is a medication that inhibits phosphodiesterase in a non-specific manner and reduces the uptake of adenosine by cells.

      As an antiplatelet agent, dipyridamole works by inhibiting phosphodiesterase. It can be used in combination with aspirin to prevent secondary transient ischemic attacks if clopidogrel is not well-tolerated.

      Tirofiban is a drug that inhibits the platelet glycoprotein IIb/IIIa receptor, which binds to collagen.

      The platelet receptor glycoprotein VI interacts with subendothelial collagen.

      Glycoprotein 1b is the platelet receptor for von Willebrand Factor. Although there is no specific drug that targets this interaction, autoantibodies to glycoprotein Ib are the basis of immune thrombocytopenic purpura (ITP).

      Clopidogrel targets the platelet receptor P2Y12, which interacts with adenosine diphosphate.

      Understanding the Mechanism of Action of Dipyridamole

      Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.

      Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.

      Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.

      In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.

    • This question is part of the following fields:

      • Cardiovascular System
      13.5
      Seconds
  • Question 5 - A 75-year-old male presents to his GP with a four week history of...

    Incorrect

    • A 75-year-old male presents to his GP with a four week history of shortness of breath when he walks for approximately two minutes on level ground. There is also an associated central chest pain which resolves when he rests. The pain is localised and does not radiate.

      On examination, there were obvious signs of ankle and sacral pitting oedema. A left ventricular heave was palpated but the apex beat was not displaced. A systolic murmur was heard best at the second intercostal space just right of the sternum. This murmur also radiated to the carotid arteries.

      Which investigation is most likely to confirm the underlying cause of his symptoms?

      Your Answer: Chest x ray

      Correct Answer: Echocardiogram

      Explanation:

      Diagnosis of Valvular Heart Disease

      Echocardiography is the most sensitive and specific way to diagnose valvular heart disease (VHD). It involves observing the valvular leaflets and degree of calcified stenosis of the aortic valve, as well as calculating cardiac output and ejection fraction for prognostic information. Chest x-ray may reveal a calcified aortic valve and left ventricular hypertrophy, while bilateral ankle edema is a minor sign for congestive heart failure. To assess the severity of heart failure, an x-ray, ECG, and BNP should be performed, but echocardiogram remains the most reliable diagnostic tool for VHD.

      A myocardial infarction is unlikely in this patient due to her age and the duration of symptoms. Instead, her angina-type pain is likely due to her underlying aortic valve disease. An angiogram of the coronary arteries alone cannot diagnose valvular defects. Cardiac enzymes such as troponin I and T are markers for myocardial necrosis and will not aid in the diagnosis of VHD. While ECG should be performed in a patient presenting with these symptoms, it alone is insufficient to diagnose VHD. The ECG may show left axis deviation due to left ventricular hypertrophy.

    • This question is part of the following fields:

      • Cardiovascular System
      38.8
      Seconds
  • Question 6 - A 67-year-old man is admitted for a below knee amputation. He is taking...

    Incorrect

    • A 67-year-old man is admitted for a below knee amputation. He is taking digoxin. The patient presents with an irregularly irregular pulse. What would be your expectation when examining the jugular venous pressure?

      Your Answer: Slow y descent

      Correct Answer: Absent a waves

      Explanation:

      The pressure in the jugular vein.

      Understanding Jugular Venous Pressure

      Jugular venous pressure (JVP) is a useful tool for assessing right atrial pressure and identifying underlying valvular disease. The waveform of the jugular vein can provide valuable information about the heart’s function. A non-pulsatile JVP may indicate superior vena caval obstruction, while Kussmaul’s sign describes a paradoxical rise in JVP during inspiration seen in constrictive pericarditis.

      The ‘a’ wave of the jugular vein waveform represents atrial contraction. A large ‘a’ wave may indicate conditions such as tricuspid stenosis, pulmonary stenosis, or pulmonary hypertension. However, an absent ‘a’ wave is common in atrial fibrillation.

      Cannon ‘a’ waves are caused by atrial contractions against a closed tricuspid valve. They are seen in conditions such as complete heart block, ventricular tachycardia/ectopics, nodal rhythm, and single chamber ventricular pacing.

      The ‘c’ wave represents the closure of the tricuspid valve and is not normally visible. The ‘v’ wave is due to passive filling of blood into the atrium against a closed tricuspid valve. Giant ‘v’ waves may indicate tricuspid regurgitation.

      Finally, the ‘x’ descent represents the fall in atrial pressure during ventricular systole, while the ‘y’ descent represents the opening of the tricuspid valve. Understanding the jugular venous pressure waveform can provide valuable insights into the heart’s function and help diagnose underlying conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      11.3
      Seconds
  • Question 7 - A 67-year-old man is scheduled for surgery to treat transitional cell carcinoma of...

    Incorrect

    • A 67-year-old man is scheduled for surgery to treat transitional cell carcinoma of the left kidney. During the procedure, the surgeon needs to locate and dissect the left renal artery. Can you identify the vertebral level where the origin of this artery can be found?

      Your Answer: T12

      Correct Answer: L1

      Explanation:

      The L1 level is where the left renal artery is located.

      Located just below the superior mesenteric artery at L1, the left renal artery arises from the abdominal aorta. It is positioned slightly lower than the right renal artery.

      At the T10 vertebral level, the vagal trunk accompanies the oesophagus as it passes through the diaphragm.

      The T12 vertebral level marks the point where the aorta passes through the diaphragm, along with the thoracic duct and azygous veins. Additionally, this is where the coeliac trunk branches out.

      The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.

    • This question is part of the following fields:

      • Cardiovascular System
      23.9
      Seconds
  • Question 8 - A 26-year-old man presents to the emergency department after experiencing a syncopal episode....

    Correct

    • A 26-year-old man presents to the emergency department after experiencing a syncopal episode. He is currently stable and reports no warning signs prior to the episode. He has had a few similar episodes in the past but did not seek medical attention. Upon further investigation, it is discovered that his father and uncle both died suddenly from heart attacks at ages 45 and 42, respectively. An ECG reveals coved ST segment elevation in V1 and V2 leads, followed by a negative T wave. What is the definitive treatment for this patient's condition?

      Your Answer: Implantable cardioverter-defibrillator

      Explanation:

      The most effective management for Brugada syndrome is the implantation of a cardioverter-defibrillator, as per the NICE guidelines. This is the recommended treatment for patients with the condition, as evidenced by this man’s ECG findings, syncopal episodes, and family history of sudden cardiac deaths.

      While class I antiarrhythmic drugs like flecainide and procainamide may be used in clinical settings to diagnose Brugada syndrome, they should be avoided in patients with the condition as they can transiently induce the ECG features of the syndrome.

      Quinidine, another class I antiarrhythmic drug, has shown some benefits in preventing and treating tachyarrhythmias in small studies of patients with Brugada syndrome. However, it is not a definitive treatment and has not been shown to reduce the rate of sudden cardiac deaths in those with the condition.

      Amiodarone is typically used in life-threatening situations to stop ventricular tachyarrhythmias. However, due to its unfavorable side effect profile, it is not recommended for long-term use, especially in younger patients who may require it for decades.

      Understanding Brugada Syndrome

      Brugada syndrome is a type of inherited cardiovascular disease that can lead to sudden cardiac death. It is passed down in an autosomal dominant manner and is more prevalent in Asians, with an estimated occurrence of 1 in 5,000-10,000 individuals. The condition has a variety of genetic variants, but around 20-40% of cases are caused by a mutation in the SCN5A gene, which encodes the myocardial sodium ion channel protein.

      One of the key diagnostic features of Brugada syndrome is the presence of convex ST segment elevation greater than 2mm in more than one of the V1-V3 leads, followed by a negative T wave and partial right bundle branch block. These ECG changes may become more apparent after the administration of flecainide or ajmaline, which are the preferred diagnostic tests for suspected cases of Brugada syndrome.

      The management of Brugada syndrome typically involves the implantation of a cardioverter-defibrillator to prevent sudden cardiac death. It is important for individuals with Brugada syndrome to receive regular medical monitoring and genetic counseling to manage their condition effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      2
      Seconds
  • Question 9 - A person in their 60s is prescribed clopidogrel following a transient ischaemic attack....

    Correct

    • A person in their 60s is prescribed clopidogrel following a transient ischaemic attack. What is the mechanism of action of clopidogrel as an antiplatelet medication?

      Clopidogrel is prescribed to prevent blood clots from forming by inhibiting platelet aggregation. It works by irreversibly binding to the P2Y12 receptor on the platelet surface, which prevents the activation of the glycoprotein IIb/IIIa complex. This complex is responsible for the final common pathway of platelet aggregation, so by inhibiting its activation, clopidogrel reduces the risk of thrombotic events such as stroke or myocardial infarction.

      Your Answer: ADP receptor antagonist

      Explanation:

      Clopidogrel works by blocking ADP receptors, which prevents platelet activation and the formation of blood clots.

      Aspirin and other NSAIDs inhibit the COX-1 enzyme, leading to a decrease in prostaglandins and thromboxane, which helps to prevent blood clots.

      Antiplatelet medications like abciximab and eptifibatide work by blocking glycoprotein IIb/IIIa receptors on platelets, which prevents platelet adhesion and activation.

      Increasing thrombomodulin expression and prostacyclin levels would have the opposite effect and increase blood coagulability and platelet production.

      Clopidogrel: An Antiplatelet Agent for Cardiovascular Disease

      Clopidogrel is a medication used to manage cardiovascular disease by preventing platelets from sticking together and forming clots. It is commonly used in patients with acute coronary syndrome and is now also recommended as a first-line treatment for patients following an ischaemic stroke or with peripheral arterial disease. Clopidogrel belongs to a class of drugs called thienopyridines, which work in a similar way. Other examples of thienopyridines include prasugrel, ticagrelor, and ticlopidine.

      Clopidogrel works by blocking the P2Y12 adenosine diphosphate (ADP) receptor, which prevents platelets from becoming activated. However, concurrent use of proton pump inhibitors (PPIs) may make clopidogrel less effective. The Medicines and Healthcare products Regulatory Agency (MHRA) issued a warning in July 2009 about this interaction, and although evidence is inconsistent, omeprazole and esomeprazole are still cause for concern. Other PPIs, such as lansoprazole, are generally considered safe to use with clopidogrel. It is important to consult with a healthcare provider before taking any new medications or supplements.

    • This question is part of the following fields:

      • Cardiovascular System
      1.3
      Seconds
  • Question 10 - A woman with longstanding angina visits her doctor and reports persistent symptoms. The...

    Correct

    • A woman with longstanding angina visits her doctor and reports persistent symptoms. The patient was previously prescribed a calcium channel blocker, but due to her asthma, a beta blocker cannot be prescribed. The doctor decides to prescribe ivabradine. What is the site of action of ivabradine in the heart?

      Your Answer: Sinoatrial node

      Explanation:

      The mechanism of action of Ivabradine in heart failure involves targeting the If ion current present in the sinoatrial node to lower the heart rate.

      Ivabradine: An Anti-Anginal Drug

      Ivabradine is a type of medication used to treat angina by reducing the heart rate. It works by targeting the If (‘funny’) ion current, which is found in high levels in the sinoatrial node. By doing so, it decreases the activity of the cardiac pacemaker.

      However, Ivabradine is not without its side effects. Many patients report experiencing visual disturbances, such as luminous phenomena, as well as headaches, bradycardia, and heart block.

      Despite its potential benefits, there is currently no evidence to suggest that Ivabradine is superior to existing treatments for stable angina. As with any medication, it is important to weigh the potential benefits against the risks and side effects before deciding whether or not to use it.

    • This question is part of the following fields:

      • Cardiovascular System
      4.6
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (4/10) 40%
Passmed