00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - You are requested to evaluate a 62-year-old individual who has arrived with complaints...

    Correct

    • You are requested to evaluate a 62-year-old individual who has arrived with complaints of chest discomfort. The nurse has handed you the ECG report, as the ECG machine has indicated 'anterior infarction' in its comments.

      Which leads would you anticipate observing ST elevation in an acute anterior STEMI?

      Your Answer: V3-V4

      Explanation:

      The leads V3 and V4 represent the anterior myocardial area.

      Acute Coronary Syndromes (ACS) is a term used to describe a group of conditions that involve the sudden reduction or blockage of blood flow to the heart. This can lead to a heart attack or unstable angina. ACS includes ST segment elevation myocardial infarction (STEMI), non-ST segment elevation myocardial infarction (NSTEMI), and unstable angina (UA).

      The development of ACS is usually seen in patients who already have underlying coronary heart disease. This disease is characterized by the buildup of fatty plaques in the walls of the coronary arteries, which can gradually narrow the arteries and reduce blood flow to the heart. This can cause chest pain, known as angina, during physical exertion. In some cases, the fatty plaques can rupture, leading to a complete blockage of the artery and a heart attack.

      There are both non modifiable and modifiable risk factors for ACS. non modifiable risk factors include increasing age, male gender, and family history. Modifiable risk factors include smoking, diabetes mellitus, hypertension, hypercholesterolemia, and obesity.

      The symptoms of ACS typically include chest pain, which is often described as a heavy or constricting sensation in the central or left side of the chest. The pain may also radiate to the jaw or left arm. Other symptoms can include shortness of breath, sweating, and nausea/vomiting. However, it’s important to note that some patients, especially diabetics or the elderly, may not experience chest pain.

      The diagnosis of ACS is typically made based on the patient’s history, electrocardiogram (ECG), and blood tests for cardiac enzymes, specifically troponin. The ECG can show changes consistent with a heart attack, such as ST segment elevation or depression, T wave inversion, or the presence of a new left bundle branch block. Elevated troponin levels confirm the diagnosis of a heart attack.

      The management of ACS depends on the specific condition and the patient’s risk factors. For STEMI, immediate coronary reperfusion therapy, either through primary percutaneous coronary intervention (PCI) or fibrinolysis, is recommended. In addition to aspirin, a second antiplatelet agent is usually given. For NSTEMI or unstable angina, the treatment approach may involve reperfusion therapy or medical management, depending on the patient’s risk of future cardiovascular events.

    • This question is part of the following fields:

      • Cardiology
      9.9
      Seconds
  • Question 2 - A 45 year old man comes to the emergency department after intentionally overdosing...

    Correct

    • A 45 year old man comes to the emergency department after intentionally overdosing on his digoxin medication. He informs you that he consumed approximately 50 tablets of digoxin shortly after discovering that his wife wants to end their marriage and file for divorce. Which of the following symptoms is commonly seen in cases of digoxin toxicity?

      Your Answer: Yellow-green vision

      Explanation:

      One of the signs of digoxin toxicity is yellow-green vision. Other clinical features include feeling generally unwell, lethargy, nausea and vomiting, loss of appetite, confusion, and the development of arrhythmias such as AV block and bradycardia.

      Further Reading:

      Digoxin is a medication used for rate control in atrial fibrillation and for improving symptoms in heart failure. It works by decreasing conduction through the atrioventricular node and increasing the force of cardiac muscle contraction. However, digoxin toxicity can occur, and plasma concentration alone does not determine if a patient has developed toxicity. Symptoms of digoxin toxicity include feeling generally unwell, lethargy, nausea and vomiting, anorexia, confusion, yellow-green vision, arrhythmias, and gynaecomastia.

      ECG changes seen in digoxin toxicity include downsloping ST depression with a characteristic Salvador Dali sagging appearance, flattened, inverted, or biphasic T waves, shortened QT interval, mild PR interval prolongation, and prominent U waves. There are several precipitating factors for digoxin toxicity, including hypokalaemia, increasing age, renal failure, myocardial ischaemia, electrolyte imbalances, hypoalbuminaemia, hypothermia, hypothyroidism, and certain medications such as amiodarone, quinidine, verapamil, and diltiazem.

      Management of digoxin toxicity involves the use of digoxin specific antibody fragments, also known as Digibind or digifab. Arrhythmias should be treated, and electrolyte disturbances should be corrected with close monitoring of potassium levels. It is important to note that digoxin toxicity can be precipitated by hypokalaemia, and toxicity can then lead to hyperkalaemia.

    • This question is part of the following fields:

      • Cardiology
      233.2
      Seconds
  • Question 3 - A 32 year old male attends the emergency department due to sharp chest...

    Correct

    • A 32 year old male attends the emergency department due to sharp chest pain that has come on gradually over the past 48 hours. The patient reports he has general muscle aches and feels more fatigued than usual. The patient indicates the pain is retrosternal and worsens with deep inspiration and lying supine. On auscultation of the chest, a rub is audible that resembles the sound of squeaky leather. The rhythm is regular and quiet heart sounds are noted. Observations are shown below:

      Blood pressure: 112/68 mmHg
      Pulse rate: 92 bpm
      Respiratory rate: 18 rpm
      Temperature: 37.4ºC
      Oxygen saturations: 98% on air

      What is the likely diagnosis?

      Your Answer: Pericarditis

      Explanation:

      Pericardial friction rub is a common finding in pericarditis and is often described as a sound similar to squeaking leather. This patient exhibits symptoms that are consistent with acute pericarditis, including flu-like illness with muscle pain and fatigue, chest pain that worsens when lying down and improves when sitting up or leaning forward, and the presence of a pleural rub. The gradual onset of symptoms rules out conditions like pulmonary embolism or acute myocardial ischemia. It is important to note that while the pericardial rub is often considered part of the classic triad of clinical features, it is only present in about one-third of patients. Additionally, the rub may come and go, so repeated examinations may increase the chances of detecting this sign.

      Further Reading:

      Pericarditis is an inflammation of the pericardium, which is the protective sac around the heart. It can be acute, lasting less than 6 weeks, and may present with chest pain, cough, dyspnea, flu-like symptoms, and a pericardial rub. The most common causes of pericarditis include viral infections, tuberculosis, bacterial infections, uremia, trauma, and autoimmune diseases. However, in many cases, the cause remains unknown. Diagnosis is based on clinical features, such as chest pain, pericardial friction rub, and electrocardiographic changes. Treatment involves symptom relief with nonsteroidal anti-inflammatory drugs (NSAIDs), and patients should avoid strenuous activity until symptoms improve. Complicated cases may require treatment for the underlying cause, and large pericardial effusions may need urgent drainage. In cases of purulent effusions, antibiotic therapy is necessary, and steroid therapy may be considered for pericarditis related to autoimmune disorders or if NSAIDs alone are ineffective.

    • This question is part of the following fields:

      • Cardiology
      48.9
      Seconds
  • Question 4 - A 32 year old with a documented peanut allergy is currently receiving treatment...

    Correct

    • A 32 year old with a documented peanut allergy is currently receiving treatment for an anaphylactic reaction. What are the most likely cardiovascular manifestations that you would observe in a patient experiencing an episode of anaphylaxis?

      Your Answer: Hypotension and tachycardia

      Explanation:

      Anaphylaxis, also known as anaphylactic shock, is characterized by certain symptoms similar to other types of shock. These symptoms include low blood pressure (hypotension), rapid heart rate (tachycardia), irregular heart rhythm (arrhythmia), changes in the electrocardiogram (ECG) indicating reduced blood flow to the heart (myocardial ischemia), such as ST elevation, and in severe cases, cardiac arrest.

      Further Reading:

      Anaphylaxis is a severe and life-threatening hypersensitivity reaction that can have sudden onset and progression. It is characterized by skin or mucosal changes and can lead to life-threatening airway, breathing, or circulatory problems. Anaphylaxis can be allergic or non-allergic in nature.

      In allergic anaphylaxis, there is an immediate hypersensitivity reaction where an antigen stimulates the production of IgE antibodies. These antibodies bind to mast cells and basophils. Upon re-exposure to the antigen, the IgE-covered cells release histamine and other inflammatory mediators, causing smooth muscle contraction and vasodilation.

      Non-allergic anaphylaxis occurs when mast cells degrade due to a non-immune mediator. The clinical outcome is the same as in allergic anaphylaxis.

      The management of anaphylaxis is the same regardless of the cause. Adrenaline is the most important drug and should be administered as soon as possible. The recommended doses for adrenaline vary based on age. Other treatments include high flow oxygen and an IV fluid challenge. Corticosteroids and chlorpheniramine are no longer recommended, while non-sedating antihistamines may be considered as third-line treatment after initial stabilization of airway, breathing, and circulation.

      Common causes of anaphylaxis include food (such as nuts, which is the most common cause in children), drugs, and venom (such as wasp stings). Sometimes it can be challenging to determine if a patient had a true episode of anaphylaxis. In such cases, serum tryptase levels may be measured, as they remain elevated for up to 12 hours following an acute episode of anaphylaxis.

      The Resuscitation Council (UK) provides guidelines for the management of anaphylaxis, including a visual algorithm that outlines the recommended steps for treatment.
      https://www.resus.org.uk/sites/default/files/2021-05/Emergency%20Treatment%20of%20Anaphylaxis%20May%202021_0.pdf

    • This question is part of the following fields:

      • Cardiology
      49.4
      Seconds
  • Question 5 - A 70-year-old female smoker presents with intense chest discomfort. Her ECG indicates an...

    Incorrect

    • A 70-year-old female smoker presents with intense chest discomfort. Her ECG indicates an acute myocardial infarction and she is immediately taken to the cath lab. Angiography reveals a blockage in the left anterior descending artery.
      Which area of the heart is most likely affected in this scenario?

      Your Answer: Anteroseptal

      Correct Answer: Right ventricle

      Explanation:

      A summary of the vessels involved in different types of myocardial infarction, along with the corresponding ECG leads and the location of the infarction.

      For instance, an anteroseptal infarction involving the left anterior descending artery is indicated by ECG leads V1-V3. Similarly, an anterior infarction involving the left anterior descending artery is indicated by leads V3-V4.

      In cases of anterolateral infarctions, both the left anterior descending artery and the left circumflex artery are involved, and this is reflected in ECG leads V5-V6. An extensive anterior infarction involving the left anterior descending artery is indicated by leads V1-V6.

      Lateral infarcts involving the left circumflex artery are indicated by leads I, II, aVL, and V6. Inferior infarctions, on the other hand, involve either the right coronary artery (in 80% of cases) or the left circumflex artery (in 20% of cases), and this is shown by leads II, III, and aVF.

      In the case of a right ventricular infarction, the right coronary artery is involved, and this is indicated by leads V1 and V4R. Lastly, a posterior infarction involving the right coronary artery is shown by leads V7-V9.

    • This question is part of the following fields:

      • Cardiology
      736.5
      Seconds
  • Question 6 - You are called to a VF cardiac arrest in the resus area of...

    Correct

    • You are called to a VF cardiac arrest in the resus area of your Pediatric Emergency Department.
      Epinephrine should be administered at which of the following points during a pediatric VF arrest?

      Your Answer: After the 3rd shock once chest compressions have been resumed

      Explanation:

      Adrenaline is recommended to be administered after the third shock in a shockable cardiac arrest (Vf/pVT) once chest compressions have been resumed. The recommended dose is 1 mg, which can be administered as either 10 mL of a 1:10,000 solution or 1 mL of a 1:1000 solution.

      Subsequently, adrenaline should be given every 3-5 minutes, alternating with chest compressions. It is important to administer adrenaline without interrupting chest compressions to ensure continuous circulation and maximize the chances of successful resuscitation.

    • This question is part of the following fields:

      • Cardiology
      60.7
      Seconds
  • Question 7 - Your hospital’s oncology department is currently evaluating the utility of a triple marker...

    Correct

    • Your hospital’s oncology department is currently evaluating the utility of a triple marker test for use in risk stratification of patients with suspected breast cancer. The test will use estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2).
      How long after tumor formation do ER levels start to increase?

      Your Answer: 1.5 hours

      Explanation:

      The timing of the initial rise, peak, and return to normality of various cardiac enzymes can serve as a helpful guide. Creatine kinase, the main cardiac isoenzyme, typically experiences an initial rise within 4-8 hours, reaches its peak at 18 hours, and returns to normal within 2-3 days. Myoglobin, which lacks specificity due to its association with skeletal muscle damage, shows an initial rise within 1-4 hours, peaks at 6-7 hours, and returns to normal within 24 hours. Troponin I, known for its sensitivity and specificity, exhibits an initial rise within 3-12 hours, reaches its peak at 24 hours, and returns to normal within 3-10 days. HFABP, or heart fatty acid binding protein, experiences an initial rise within 1.5 hours, peaks at 5-10 hours, and returns to normal within 24 hours. Lastly, LDH, predominantly found in cardiac muscle, shows an initial rise at 10 hours, peaks at 24-48 hours, and returns to normal within 14 days.

    • This question is part of the following fields:

      • Cardiology
      83.9
      Seconds
  • Question 8 - You are managing a 68-year-old woman who has been brought to the resuscitation...

    Correct

    • You are managing a 68-year-old woman who has been brought to the resuscitation bay by the ambulance team. The patient experienced sudden dizziness and difficulty breathing while at home. The ambulance crew presents the patient's ECG for your review. Your plan includes administering atropine to address the patient's arrhythmia. Which of the following conditions would contraindicate the use of atropine?

      Your Answer: Heart transplant

      Explanation:

      Atropine should not be given to patients with certain conditions, including heart transplant, angle-closure glaucoma, gastrointestinal motility disorders, myasthenia gravis, severe ulcerative colitis, toxic megacolon, bladder outflow obstruction, and urinary retention. In heart transplant patients, atropine will not have the desired effect as the denervated hearts do not respond to vagal blockade. Giving atropine in these patients may even lead to paradoxical sinus arrest or high-grade AV block.

      Further Reading:

      Causes of Bradycardia:
      – Physiological: Athletes, sleeping
      – Cardiac conduction dysfunction: Atrioventricular block, sinus node disease
      – Vasovagal & autonomic mediated: Vasovagal episodes, carotid sinus hypersensitivity
      – Hypothermia
      – Metabolic & electrolyte disturbances: Hypothyroidism, hyperkalaemia, hypermagnesemia
      – Drugs: Beta-blockers, calcium channel blockers, digoxin, amiodarone
      – Head injury: Cushing’s response
      – Infections: Endocarditis
      – Other: Sarcoidosis, amyloidosis

      Presenting symptoms of Bradycardia:
      – Presyncope (dizziness, lightheadedness)
      – Syncope
      – Breathlessness
      – Weakness
      – Chest pain
      – Nausea

      Management of Bradycardia:
      – Assess and monitor for adverse features (shock, syncope, myocardial ischaemia, heart failure)
      – Treat reversible causes of bradycardia
      – Pharmacological treatment: Atropine is first-line, adrenaline and isoprenaline are second-line
      – Transcutaneous pacing if atropine is ineffective
      – Other drugs that may be used: Aminophylline, dopamine, glucagon, glycopyrrolate

      Bradycardia Algorithm:
      – Follow the algorithm for management of bradycardia, which includes assessing and monitoring for adverse features, treating reversible causes, and using appropriate medications or pacing as needed.
      https://acls-algorithms.com/wp-content/uploads/2020/12/Website-Bradycardia-Algorithm-Diagram.pdf

    • This question is part of the following fields:

      • Cardiology
      270.8
      Seconds
  • Question 9 - A 68 year old is brought to the emergency department by his son....

    Correct

    • A 68 year old is brought to the emergency department by his son. The patient complained of feeling sick. On checking the patient's medication the son believes he may have taken an excessive amount of digoxin tablets over the past few days. You are worried about digoxin toxicity. What ECG characteristics are linked to digoxin toxicity?

      Your Answer: Downsloping ST depression

      Explanation:

      One way to assess for digoxin toxicity is by examining the patient’s electrocardiogram (ECG) for specific characteristics. In the case of digoxin toxicity, ECG findings may include downsloping ST depression, prolonged QT interval, tall tented T-waves, and possibly delta waves. However, a short PR interval (< 120ms) is not typically associated with digoxin toxicity. Further Reading: Digoxin is a medication used for rate control in atrial fibrillation and for improving symptoms in heart failure. It works by decreasing conduction through the atrioventricular node and increasing the force of cardiac muscle contraction. However, digoxin toxicity can occur, and plasma concentration alone does not determine if a patient has developed toxicity. Symptoms of digoxin toxicity include feeling generally unwell, lethargy, nausea and vomiting, anorexia, confusion, yellow-green vision, arrhythmias, and gynaecomastia. ECG changes seen in digoxin toxicity include downsloping ST depression with a characteristic Salvador Dali sagging appearance, flattened, inverted, or biphasic T waves, shortened QT interval, mild PR interval prolongation, and prominent U waves. There are several precipitating factors for digoxin toxicity, including hypokalaemia, increasing age, renal failure, myocardial ischaemia, electrolyte imbalances, hypoalbuminaemia, hypothermia, hypothyroidism, and certain medications such as amiodarone, quinidine, verapamil, and diltiazem. Management of digoxin toxicity involves the use of digoxin specific antibody fragments, also known as Digibind or digifab. Arrhythmias should be treated, and electrolyte disturbances should be corrected with close monitoring of potassium levels. It is important to note that digoxin toxicity can be precipitated by hypokalaemia, and toxicity can then lead to hyperkalaemia.

    • This question is part of the following fields:

      • Cardiology
      6.6
      Seconds
  • Question 10 - A 32-year-old woman comes to the Emergency Department complaining of dizziness and palpitations....

    Incorrect

    • A 32-year-old woman comes to the Emergency Department complaining of dizziness and palpitations. She informs you that she was recently diagnosed with Wolff-Parkinson-White syndrome. You proceed to perform an ECG.

      Which ONE statement about the ECG findings in Wolff-Parkinson-White (WPW) syndrome is accurate?

      Your Answer: The delta wave is the slurring of the downslope of the QRS complex

      Correct Answer: Type A WPW can resemble right bundle branch block

      Explanation:

      Wolff-Parkinson-White (WPW) syndrome is a condition that affects the electrical system of the heart. It occurs when there is an abnormal pathway, known as the bundle of Kent, between the atria and the ventricles. This pathway can cause premature contractions of the ventricles, leading to a type of rapid heartbeat called atrioventricular re-entrant tachycardia (AVRT).

      In a normal heart rhythm, the electrical signals travel through the bundle of Kent and stimulate the ventricles. However, in WPW syndrome, these signals can cause the ventricles to contract prematurely. This can be seen on an electrocardiogram (ECG) as a shortened PR interval, a slurring of the initial rise in the QRS complex (known as a delta wave), and a widening of the QRS complex.

      There are two distinct types of WPW syndrome that can be identified on an ECG. Type A is characterized by predominantly positive delta waves and QRS complexes in the praecordial leads, with a dominant R wave in V1. This can sometimes be mistaken for right bundle branch block (RBBB). Type B, on the other hand, shows predominantly negative delta waves and QRS complexes in leads V1 and V2, and positive in the other praecordial leads, resembling left bundle branch block (LBBB).

      Overall, WPW syndrome is a condition that affects the electrical conduction system of the heart, leading to abnormal heart rhythms. It can be identified on an ECG by specific features such as shortened PR interval, delta waves, and widened QRS complex.

    • This question is part of the following fields:

      • Cardiology
      32.7
      Seconds
  • Question 11 - A 72 year old male patient has arrived at the emergency department after...

    Correct

    • A 72 year old male patient has arrived at the emergency department after injuring himself in a fall. Upon reviewing the patient's medical history, you discover that he was diagnosed with mitral stenosis last year. You advise the medical students to assess the patient for indications of this condition.

      What is a typical symptom observed in individuals with mitral stenosis?

      Your Answer: Malar flush

      Explanation:

      One of the clinical features of mitral stenosis is malar flush, which refers to a reddening or flushing of the cheeks. Other clinical features include a mid-late diastolic murmur that is best heard during expiration, a loud S1 heart sound with an opening snap, a low volume pulse, atrial fibrillation, and signs of pulmonary edema such as crepitations or the presence of white or pink frothy sputum.

      Further Reading:

      Mitral Stenosis:
      – Causes: Rheumatic fever, Mucopolysaccharidoses, Carcinoid, Endocardial fibroelastosis
      – Features: Mid-late diastolic murmur, loud S1, opening snap, low volume pulse, malar flush, atrial fibrillation, signs of pulmonary edema, tapping apex beat
      – Features of severe mitral stenosis: Length of murmur increases, opening snap becomes closer to S2
      – Investigation findings: CXR may show left atrial enlargement, echocardiography may show reduced cross-sectional area of the mitral valve

      Mitral Regurgitation:
      – Causes: Mitral valve prolapse, Myxomatous degeneration, Ischemic heart disease, Rheumatic fever, Connective tissue disorders, Endocarditis, Dilated cardiomyopathy
      – Features: pansystolic murmur radiating to left axilla, soft S1, S3, laterally displaced apex beat with heave
      – Signs of acute MR: Decompensated congestive heart failure symptoms
      – Signs of chronic MR: Leg edema, fatigue, arrhythmia (atrial fibrillation)
      – Investigation findings: Doppler echocardiography to detect regurgitant flow and pulmonary hypertension, ECG may show signs of LA enlargement and LV hypertrophy, CXR may show LA and LV enlargement in chronic MR and pulmonary edema in acute MR.

    • This question is part of the following fields:

      • Cardiology
      99.2
      Seconds
  • Question 12 - You are summoned to a cardiac arrest in the resuscitation area of your...

    Correct

    • You are summoned to a cardiac arrest in the resuscitation area of your Emergency Department.
      Which ONE statement about the utilization of amiodarone in cardiac arrest is accurate?

      Your Answer: It increases the duration of the action potential

      Explanation:

      Amiodarone is a medication that is recommended to be administered after the third shock in a shockable cardiac arrest (Vf/pVT) while chest compressions are being performed. The prescribed dose is 300 mg, given as an intravenous bolus that is diluted in 5% dextrose to a volume of 20 mL. It is important to note that amiodarone is not suitable for treating PEA or asystole.

      In cases where VF/pVT persists after five defibrillation attempts, an additional dose of 150 mg of amiodarone should be given. However, if amiodarone is not available, lidocaine can be used as an alternative. The recommended dose of lidocaine is 1 mg/kg. It is crucial to avoid administering lidocaine if amiodarone has already been given.

      Amiodarone is classified as a membrane-stabilizing antiarrhythmic drug. It works by prolonging the duration of the action potential and the refractory period in both the atrial and ventricular myocardium. This medication also slows down atrioventricular conduction and has a similar effect on accessory pathways.

      Additionally, amiodarone has a mild negative inotropic action, meaning it weakens the force of heart contractions. It also causes peripheral vasodilation through non-competitive alpha-blocking effects.

      It is important to note that while there is no evidence of long-term benefits from using amiodarone, it may improve short-term survival rates, which justifies its continued use.

    • This question is part of the following fields:

      • Cardiology
      113.6
      Seconds
  • Question 13 - You conduct a cardiovascular examination on a 72-year-old man who complains of difficulty...

    Correct

    • You conduct a cardiovascular examination on a 72-year-old man who complains of difficulty breathing. He informs you that he has a known heart valve issue. During the examination, you observe a pronounced first heart sound (S1).
      What is the most probable cause of this finding?

      Your Answer: Mitral stenosis

      Explanation:

      The first heart sound (S1) is created by vibrations produced when the mitral and tricuspid valves close. It occurs at the end of diastole and the start of ventricular systole, coming before the upstroke of the carotid pulsation.

      A sample of the normal heart sounds can be listened to here (courtesy of Littman stethoscopes).

      A loud S1 can be associated with the following conditions:
      – Increased transvalvular gradient (e.g. mitral stenosis, tricuspid stenosis)
      – Increased force of ventricular contraction (e.g. tachycardia, hyperdynamic states like fever and thyrotoxicosis)
      – Shortened PR interval (e.g. Wolff-Parkinson-White syndrome)
      – Mitral valve prolapse
      – Thin individuals

      A soft S1 can be associated with the following conditions:
      – Inappropriate apposition of the AV valves (e.g. mitral regurgitation, tricuspid regurgitation)
      – Prolonged PR interval (e.g. heart block, digoxin toxicity)
      – Decreased force of ventricular contraction (e.g. myocarditis, myocardial infarction)
      – Increased distance from the heart (e.g. obesity, emphysema, pericardial effusion)

      A split S1 can be associated with the following conditions:
      – Right bundle branch block
      – LV pacing
      – Ebstein anomaly

    • This question is part of the following fields:

      • Cardiology
      94.6
      Seconds
  • Question 14 - You are summoned to the resuscitation bay to provide assistance with a 72-year-old...

    Correct

    • You are summoned to the resuscitation bay to provide assistance with a 72-year-old patient who is undergoing treatment for cardiac arrest. After three shocks, the patient experiences a return of spontaneous circulation.

      What are the recommended blood pressure goals following a return of spontaneous circulation (ROSC) after cardiac arrest?

      Your Answer: Mean arterial pressure 65-100 mmHg

      Explanation:

      After the return of spontaneous circulation (ROSC), there are two specific blood pressure targets that need to be achieved. The first target is to maintain a systolic blood pressure above 100 mmHg. The second target is to maintain the mean arterial pressure (MAP) within the range of 65 to 100 mmHg.

      Further Reading:

      Cardiopulmonary arrest is a serious event with low survival rates. In non-traumatic cardiac arrest, only about 20% of patients who arrest as an in-patient survive to hospital discharge, while the survival rate for out-of-hospital cardiac arrest is approximately 8%. The Resus Council BLS/AED Algorithm for 2015 recommends chest compressions at a rate of 100-120 per minute with a compression depth of 5-6 cm. The ratio of chest compressions to rescue breaths is 30:2.

      After a cardiac arrest, the goal of patient care is to minimize the impact of post cardiac arrest syndrome, which includes brain injury, myocardial dysfunction, the ischaemic/reperfusion response, and the underlying pathology that caused the arrest. The ABCDE approach is used for clinical assessment and general management. Intubation may be necessary if the airway cannot be maintained by simple measures or if it is immediately threatened. Controlled ventilation is aimed at maintaining oxygen saturation levels between 94-98% and normocarbia. Fluid status may be difficult to judge, but a target mean arterial pressure (MAP) between 65 and 100 mmHg is recommended. Inotropes may be administered to maintain blood pressure. Sedation should be adequate to gain control of ventilation, and short-acting sedating agents like propofol are preferred. Blood glucose levels should be maintained below 8 mmol/l. Pyrexia should be avoided, and there is some evidence for controlled mild hypothermia but no consensus on this.

      Post ROSC investigations may include a chest X-ray, ECG monitoring, serial potassium and lactate measurements, and other imaging modalities like ultrasonography, echocardiography, CTPA, and CT head, depending on availability and skills in the local department. Treatment should be directed towards the underlying cause, and PCI or thrombolysis may be considered for acute coronary syndrome or suspected pulmonary embolism, respectively.

      Patients who are comatose after ROSC without significant pre-arrest comorbidities should be transferred to the ICU for supportive care. Neurological outcome at 72 hours is the best prognostic indicator of outcome.

    • This question is part of the following fields:

      • Cardiology
      162.9
      Seconds
  • Question 15 - A 68 year old male presents to the emergency department complaining of dizziness...

    Incorrect

    • A 68 year old male presents to the emergency department complaining of dizziness and palpitations that have been occurring for the past 2 hours. An ECG confirms the presence of atrial fibrillation. The patient has no previous history of atrial fibrillation but was diagnosed with mild aortic valve stenosis 8 months ago during an echocardiogram ordered by his primary care physician. The patient reports that the echocardiogram was done because he was experiencing shortness of breath, which resolved after 2-3 months and was attributed to a recent bout of pneumonia. The decision is made to attempt pharmacological cardioversion. What is the most appropriate medication to use for this purpose in this patient?

      Your Answer: Flecainide

      Correct Answer: Amiodarone

      Explanation:

      According to NICE guidelines, amiodarone is recommended as the initial choice for pharmacological cardioversion of atrial fibrillation (AF) in individuals who have evidence of structural heart disease.

      Further Reading:

      Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, affecting around 5% of patients over the age of 70-75 years and 10% of patients aged 80-85 years. While AF can cause palpitations and inefficient cardiac function, the most important aspect of managing patients with AF is reducing the increased risk of stroke.

      AF can be classified as first detected episode, paroxysmal, persistent, or permanent. First detected episode refers to the initial occurrence of AF, regardless of symptoms or duration. Paroxysmal AF occurs when a patient has 2 or more self-terminating episodes lasting less than 7 days. Persistent AF refers to episodes lasting more than 7 days that do not self-terminate. Permanent AF is continuous atrial fibrillation that cannot be cardioverted or if attempts to do so are deemed inappropriate. The treatment goals for permanent AF are rate control and anticoagulation if appropriate.

      Symptoms of AF include palpitations, dyspnea, and chest pain. The most common sign is an irregularly irregular pulse. An electrocardiogram (ECG) is essential for diagnosing AF, as other conditions can also cause an irregular pulse.

      Managing patients with AF involves two key parts: rate/rhythm control and reducing stroke risk. Rate control involves slowing down the irregular pulse to avoid negative effects on cardiac function. This is typically achieved using beta-blockers or rate-limiting calcium channel blockers. If one drug is not effective, combination therapy may be used. Rhythm control aims to restore and maintain normal sinus rhythm through pharmacological or electrical cardioversion. However, the majority of patients are managed with a rate control strategy.

      Reducing stroke risk in patients with AF is crucial. Risk stratifying tools, such as the CHA2DS2-VASc score, are used to determine the most appropriate anticoagulation strategy. Anticoagulation is recommended for patients with a score of 2 or more. Clinicians can choose between warfarin and novel oral anticoagulants (NOACs) for anticoagulation.

      Before starting anticoagulation, the patient’s bleeding risk should be assessed using tools like the HAS-BLED score or the ORBIT tool. These tools evaluate factors such as hypertension, abnormal renal or liver function, history of bleeding, age, and use of drugs that predispose to bleeding.

    • This question is part of the following fields:

      • Cardiology
      95.9
      Seconds
  • Question 16 - A 65 year old male presents to the emergency department with a 3...

    Correct

    • A 65 year old male presents to the emergency department with a 3 hour history of severe chest pain that radiates to his left arm and neck. On examination, his chest is clear and his heart sounds are normal with a regular rhythm. No carotid bruits are heard. The following observations are noted:

      Blood pressure: 150/90 mmHg
      Pulse rate: 88 bpm
      Respiration rate: 18 rpm
      Oxygen saturation: 97% on room air
      Temperature: 37.2ºC

      An ECG reveals normal sinus rhythm and a chest X-ray shows no abnormalities. The patient's pain subsides after receiving buccal GTN (glyceryl trinitrate). Cardiac enzyme tests are pending. What is the most appropriate course of action for this patient?

      Your Answer: Administer 300 mg oral aspirin

      Explanation:

      For patients suspected of having acute coronary syndromes (ACS), it is recommended that they receive 300 mg of aspirin and pain relief in the form of glyceryl trinitrate (GTN) with the option of intravenous opioids such as morphine. However, if the patient is pain-free after taking GTN, there is no need to administer morphine. The next steps in medical management or intervention will be determined once the diagnosis is confirmed.

      Further Reading:

      Acute Coronary Syndromes (ACS) is a term used to describe a group of conditions that involve the sudden reduction or blockage of blood flow to the heart. This can lead to a heart attack or unstable angina. ACS includes ST segment elevation myocardial infarction (STEMI), non-ST segment elevation myocardial infarction (NSTEMI), and unstable angina (UA).

      The development of ACS is usually seen in patients who already have underlying coronary heart disease. This disease is characterized by the buildup of fatty plaques in the walls of the coronary arteries, which can gradually narrow the arteries and reduce blood flow to the heart. This can cause chest pain, known as angina, during physical exertion. In some cases, the fatty plaques can rupture, leading to a complete blockage of the artery and a heart attack.

      There are both non modifiable and modifiable risk factors for ACS. non modifiable risk factors include increasing age, male gender, and family history. Modifiable risk factors include smoking, diabetes mellitus, hypertension, hypercholesterolemia, and obesity.

      The symptoms of ACS typically include chest pain, which is often described as a heavy or constricting sensation in the central or left side of the chest. The pain may also radiate to the jaw or left arm. Other symptoms can include shortness of breath, sweating, and nausea/vomiting. However, it’s important to note that some patients, especially diabetics or the elderly, may not experience chest pain.

      The diagnosis of ACS is typically made based on the patient’s history, electrocardiogram (ECG), and blood tests for cardiac enzymes, specifically troponin. The ECG can show changes consistent with a heart attack, such as ST segment elevation or depression, T wave inversion, or the presence of a new left bundle branch block. Elevated troponin levels confirm the diagnosis of a heart attack.

      The management of ACS depends on the specific condition and the patient’s risk factors. For STEMI, immediate coronary reperfusion therapy, either through primary percutaneous coronary intervention (PCI) or fibrinolysis, is recommended. In addition to aspirin, a second antiplatelet agent is usually given. For NSTEMI or unstable angina, the treatment approach may involve reperfusion therapy or medical management, depending on the patient’s risk of future cardiovascular events.

    • This question is part of the following fields:

      • Cardiology
      103.3
      Seconds
  • Question 17 - You are asked to evaluate a 62-year-old patient who has come in with...

    Correct

    • You are asked to evaluate a 62-year-old patient who has come in with complaints of chest discomfort. The nurse has handed you the ECG report, which states 'unspecified age septal infarction' in the comments section.

      Which leads would you anticipate observing ST elevation in an acute septal STEMI?

      Your Answer: V1, V2

      Explanation:

      The septum, which is a part of the heart, can be best identified by examining leads V1 and V2. The septum receives its blood supply from the proximal left anterior descending artery (LAD). The LAD is responsible for supplying blood to the anterior myocardium and also contributes to the blood supply of the lateral myocardium. If the LAD becomes blocked, it can result in ST elevation in all the chest leads.

      Further Reading:

      Acute Coronary Syndromes (ACS) is a term used to describe a group of conditions that involve the sudden reduction or blockage of blood flow to the heart. This can lead to a heart attack or unstable angina. ACS includes ST segment elevation myocardial infarction (STEMI), non-ST segment elevation myocardial infarction (NSTEMI), and unstable angina (UA).

      The development of ACS is usually seen in patients who already have underlying coronary heart disease. This disease is characterized by the buildup of fatty plaques in the walls of the coronary arteries, which can gradually narrow the arteries and reduce blood flow to the heart. This can cause chest pain, known as angina, during physical exertion. In some cases, the fatty plaques can rupture, leading to a complete blockage of the artery and a heart attack.

      There are both non modifiable and modifiable risk factors for ACS. non modifiable risk factors include increasing age, male gender, and family history. Modifiable risk factors include smoking, diabetes mellitus, hypertension, hypercholesterolemia, and obesity.

      The symptoms of ACS typically include chest pain, which is often described as a heavy or constricting sensation in the central or left side of the chest. The pain may also radiate to the jaw or left arm. Other symptoms can include shortness of breath, sweating, and nausea/vomiting. However, it’s important to note that some patients, especially diabetics or the elderly, may not experience chest pain.

      The diagnosis of ACS is typically made based on the patient’s history, electrocardiogram (ECG), and blood tests for cardiac enzymes, specifically troponin. The ECG can show changes consistent with a heart attack, such as ST segment elevation or depression, T wave inversion, or the presence of a new left bundle branch block. Elevated troponin levels confirm the diagnosis of a heart attack.

      The management of ACS depends on the specific condition and the patient’s risk factors. For STEMI, immediate coronary reperfusion therapy, either through primary percutaneous coronary intervention (PCI) or fibrinolysis, is recommended. In addition to aspirin, a second antiplatelet agent is usually given. For NSTEMI or unstable angina, the treatment approach may involve reperfusion therapy or medical management, depending on the patient’s risk of future cardiovascular events.

    • This question is part of the following fields:

      • Cardiology
      22.8
      Seconds
  • Question 18 - You are requested to evaluate a 60-year-old male in the emergency department who...

    Correct

    • You are requested to evaluate a 60-year-old male in the emergency department who has arrived with complaints of dizziness and difficulty breathing. Following an ECG examination, the patient is diagnosed with Torsades de pointes. What are the two electrolyte imbalances most frequently linked to this cardiac rhythm disorder?

      Your Answer: Hypokalaemia and hypomagnesaemia

      Explanation:

      Torsades de pointes is a condition that is linked to low levels of potassium (hypokalaemia) and magnesium (hypomagnesaemia). When potassium and magnesium levels are low, it can cause the QT interval to become prolonged, which increases the risk of developing Torsades de pointes.

      Further Reading:

      Torsades de pointes is an irregular broad-complex tachycardia that can be life-threatening. It is a polymorphic ventricular tachycardia that can lead to sudden cardiac death. It is characterized by distinct features on the electrocardiogram (ECG).

      The causes of irregular broad-complex tachycardia include atrial fibrillation with bundle branch block, atrial fibrillation with ventricular pre-excitation (in patients with Wolff-Parkinson-White syndrome), and polymorphic ventricular tachycardia such as torsades de pointes. However, sustained polymorphic ventricular tachycardia is unlikely to be present without adverse features, so it is important to seek expert help for the assessment and treatment of this condition.

      Torsades de pointes can be caused by drug-induced QT prolongation, diarrhea, hypomagnesemia, hypokalemia, and congenital long QT syndrome. It may also be seen in malnourished individuals due to low potassium and/or low magnesium levels. Additionally, it can occur in individuals taking drugs that prolong the QT interval or inhibit their metabolism.

      The management of torsades de pointes involves immediate action. All drugs known to prolong the QT interval should be stopped. Amiodarone should not be given for definite torsades de pointes. Electrolyte abnormalities, especially hypokalemia, should be corrected. Magnesium sulfate should be administered intravenously. If adverse features are present, immediate synchronized cardioversion should be arranged. sought, as other treatments such as overdrive pacing may be necessary to prevent relapse once the arrhythmia has been corrected. If the patient becomes pulseless, defibrillation should be attempted immediately.

      In summary, torsades de pointes is a dangerous arrhythmia that requires prompt management. It is important to identify and address the underlying causes, correct electrolyte abnormalities, and seek expert help for appropriate treatment.

    • This question is part of the following fields:

      • Cardiology
      214.2
      Seconds
  • Question 19 - A 70 year old male visits the emergency department with a complaint of...

    Correct

    • A 70 year old male visits the emergency department with a complaint of increasing shortness of breath. You observe that the patient had moderate aortic regurgitation on an echocardiogram conducted 12 months ago.

      What is a characteristic symptom of aortic regurgitation (AR)?

      Your Answer: Water hammer pulse

      Explanation:

      A collapsing pulse, also known as a water hammer pulse, is a common clinical feature associated with aortic regurgitation (AR). In AR, the pulse rises rapidly and forcefully before quickly collapsing. This pulsation pattern may also be referred to as Watson’s water hammer pulse or Corrigan’s pulse. Heart sounds in AR are typically quiet, and the second heart sound (S2) may even be absent if the valve fails to fully close. A characteristic early to mid diastolic murmur is often present. Other typical features of AR include a wide pulse pressure, a mid-diastolic Austin-Flint murmur in severe cases, a soft S1 and S2 (with S2 potentially being absent), a hyperdynamic apical pulse, and signs of heart failure such as lung creases, raised jugular venous pressure (JVP), and tachypnea.

      Further Reading:

      Valvular heart disease refers to conditions that affect the valves of the heart. In the case of aortic valve disease, there are two main conditions: aortic regurgitation and aortic stenosis.

      Aortic regurgitation is characterized by an early diastolic murmur, a collapsing pulse (also known as a water hammer pulse), and a wide pulse pressure. In severe cases, there may be a mid-diastolic Austin-Flint murmur due to partial closure of the anterior mitral valve cusps caused by the regurgitation streams. The first and second heart sounds (S1 and S2) may be soft, and S2 may even be absent. Additionally, there may be a hyperdynamic apical pulse. Causes of aortic regurgitation include rheumatic fever, infective endocarditis, connective tissue diseases like rheumatoid arthritis and systemic lupus erythematosus, and a bicuspid aortic valve. Aortic root diseases such as aortic dissection, spondyloarthropathies like ankylosing spondylitis, hypertension, syphilis, and genetic conditions like Marfan’s syndrome and Ehler-Danlos syndrome can also lead to aortic regurgitation.

      Aortic stenosis, on the other hand, is characterized by a narrow pulse pressure, a slow rising pulse, and a delayed ESM (ejection systolic murmur). The second heart sound (S2) may be soft or absent, and there may be an S4 (atrial gallop) that occurs just before S1. A thrill may also be felt. The duration of the murmur is an important factor in determining the severity of aortic stenosis. Causes of aortic stenosis include degenerative calcification (most common in older patients), a bicuspid aortic valve (most common in younger patients), William’s syndrome (supravalvular aortic stenosis), post-rheumatic disease, and subvalvular conditions like hypertrophic obstructive cardiomyopathy (HOCM).

      Management of aortic valve disease depends on the severity of symptoms. Asymptomatic patients are generally observed, while symptomatic patients may require valve replacement. Surgery may also be considered for asymptomatic patients with a valvular gradient greater than 40 mmHg and features such as left ventricular systolic dysfunction. Balloon valvuloplasty is limited to patients with critical aortic stenosis who are not fit for valve replacement.

    • This question is part of the following fields:

      • Cardiology
      25.8
      Seconds
  • Question 20 - You are summoned to a cardiac arrest in the resuscitation area of your...

    Incorrect

    • You are summoned to a cardiac arrest in the resuscitation area of your Emergency Department.
      Which ONE statement about the utilization of amiodarone in cardiac arrest is NOT true?

      Your Answer: It slows atrioventricular conduction

      Correct Answer: It should be administered as an infusion of 300 mg over 20-60 minutes

      Explanation:

      Amiodarone is a medication that is recommended to be administered after the third shock in a shockable cardiac arrest (Vf/pVT) while chest compressions are being performed. The prescribed dose is 300 mg, given as an intravenous bolus that is diluted in 5% dextrose to a volume of 20 mL. It is important to note that amiodarone is not suitable for treating PEA or asystole.

      In cases where VF/pVT persists after five defibrillation attempts, an additional dose of 150 mg of amiodarone should be given. However, if amiodarone is not available, lidocaine can be used as an alternative. The recommended dose of lidocaine is 1 mg/kg. It is crucial to avoid administering lidocaine if amiodarone has already been given.

      Amiodarone is classified as a membrane-stabilizing antiarrhythmic drug. It works by prolonging the duration of the action potential and the refractory period in both the atrial and ventricular myocardium. This medication also slows down atrioventricular conduction and has a similar effect on accessory pathways.

      Additionally, amiodarone has a mild negative inotropic action, meaning it weakens the force of heart contractions. It also causes peripheral vasodilation through non-competitive alpha-blocking effects.

      It is important to note that while there is no evidence of long-term benefits from using amiodarone, it may improve short-term survival rates, which justifies its continued use.

    • This question is part of the following fields:

      • Cardiology
      155.2
      Seconds
  • Question 21 - A 72-year-old woman presents with worsening abdominal distension and discomfort. During the examination,...

    Correct

    • A 72-year-old woman presents with worsening abdominal distension and discomfort. During the examination, she exhibits significant dependent edema and an elevated JVP. Cardiac auscultation reveals a pansystolic murmur. The abdomen is distended and tender, with the presence of shifting dullness.

      What is the SINGLE most probable diagnosis?

      Your Answer: Tricuspid regurgitation

      Explanation:

      Tricuspid regurgitation is commonly caused by right ventricular dilatation, often as a result of heart failure. Other factors that can contribute to this condition include right ventricular infarction and cor pulmonale. The clinical signs of right-sided heart failure are frequently observed, such as an elevated jugular venous pressure, peripheral edema, hepatomegaly, and ascites.

      The murmur associated with tricuspid regurgitation is a pansystolic murmur that is most audible at the tricuspid area during inspiration. A thrill may also be felt at the left sternal edge. Reverse splitting of the second heart sound can occur due to the early closure of the pulmonary valve. Additionally, a third heart sound may be present due to rapid filling of the right ventricle.

    • This question is part of the following fields:

      • Cardiology
      341.3
      Seconds
  • Question 22 - A 70-year-old woman comes in complaining of a rapid heartbeat and difficulty breathing....

    Incorrect

    • A 70-year-old woman comes in complaining of a rapid heartbeat and difficulty breathing. She has a past medical history of a kidney transplant. Her rhythm strip reveals supraventricular tachycardia.
      What is the most suitable initial dosage of adenosine to administer to her?

      Your Answer: Adenosine 6 mg IV

      Correct Answer: Adenosine 3 mg IV

      Explanation:

      Adenosine is given through a rapid IV bolus, followed by a flush of saline solution. In adults, the starting dose is 6 mg, and if needed, an additional dose of 12 mg is given. If necessary, another dose of either 12 mg or 18 mg can be administered at intervals of 1-2 minutes until the desired effect is observed.

      It is important to note that the latest ALS guidelines recommend an 18 mg dose for the third administration, while the BNF/NICE guidelines suggest a 12 mg dose.

      However, patients who have undergone a heart transplant are particularly sensitive to the effects of adenosine. Therefore, their initial dose should be reduced to 3 mg, followed by 6 mg, and then 12 mg.

    • This question is part of the following fields:

      • Cardiology
      94.6
      Seconds
  • Question 23 - A 45-year-old man presents with palpitations and is found to have atrial fibrillation....

    Correct

    • A 45-year-old man presents with palpitations and is found to have atrial fibrillation. You are requested to evaluate his ECG.
      Which of the following statements is correct regarding the ECG findings in atrial fibrillation?

      Your Answer: Some impulses are filtered out by the AV node

      Explanation:

      The classic ECG features of atrial fibrillation include an irregularly irregular rhythm, the absence of p-waves, an irregular ventricular rate, and the presence of fibrillation waves. This irregular rhythm occurs because the atrial impulses are filtered out by the AV node.

      In addition, Ashman beats may be observed in atrial fibrillation. These beats are characterized by wide complex QRS complexes, often with a morphology resembling right bundle branch block. They occur after a short R-R interval that is preceded by a prolonged R-R interval. Fortunately, Ashman beats are generally considered harmless.

      The disorganized electrical activity in atrial fibrillation typically originates at the root of the pulmonary veins.

    • This question is part of the following fields:

      • Cardiology
      1143.5
      Seconds
  • Question 24 - You assess a 60-year-old individual who has arrived at the emergency department with...

    Incorrect

    • You assess a 60-year-old individual who has arrived at the emergency department with a progressive increase in difficulty breathing. Upon reviewing the patient's medical history, you discover that they underwent an echocardiogram a year ago, which revealed moderate tricuspid regurgitation. Which of the following physical indications is linked to tricuspid regurgitation?

      Your Answer: Giant A wave on JVP waveform

      Correct Answer: Positive Carvallo's sign

      Explanation:

      Carvallo’s sign is a term used to describe the phenomenon where the systolic murmur of tricuspid regurgitation becomes louder when taking a deep breath in. Tricuspid regurgitation is characterized by a continuous murmur that starts in systole and continues throughout the entire cardiac cycle. This murmur is best heard at the lower left sternal edge and has a low frequency. In addition to Carvallo’s sign, other features of tricuspid regurgitation include the presence of an S3 heart sound, the possibility of atrial arrhythmias such as flutter or fibrillation, the presence of giant C-V waves in the jugular pulse, hepatomegaly (often with a pulsatile nature), and the development of edema, which may be accompanied by lung crepitations or pleural effusions.

      Further Reading:

      Tricuspid regurgitation (TR) is a condition where blood flows backwards through the tricuspid valve in the heart. It is classified as either primary or secondary, with primary TR being caused by abnormalities in the tricuspid valve itself and secondary TR being the result of other conditions outside of the valve. Mild TR is common, especially in young adults, and often does not cause symptoms. However, severe TR can lead to right-sided heart failure and the development of symptoms such as ascites, peripheral edema, and hepatomegaly.

      The causes of TR can vary. Primary TR can be caused by conditions such as rheumatic heart disease, myxomatous valve disease, or Ebstein anomaly. Secondary TR is often the result of right ventricular dilatation due to left heart failure or pulmonary hypertension. Other causes include endocarditis, traumatic chest injury, left ventricular systolic dysfunction, chronic lung disease, pulmonary thromboembolism, myocardial disease, left to right shunts, and carcinoid heart disease. In some cases, TR can occur as a result of infective endocarditis in IV drug abusers.

      Clinical features of TR can include a pansystolic murmur that is best heard at the lower left sternal edge, Carvallo’s sign (murmur increases with inspiration and decreases with expiration), an S3 heart sound, and the presence of atrial arrhythmias such as flutter or fibrillation. Other signs can include giant C-V waves in the jugular pulse, hepatomegaly (often pulsatile), and edema with lung crepitations or pleural effusions.

      The management of TR depends on the underlying cause and the severity of the condition. In severe cases, valve repair or replacement surgery may be necessary. Treatment may also involve addressing the underlying conditions contributing to TR, such as managing left heart failure or pulmonary hypertension.

    • This question is part of the following fields:

      • Cardiology
      47.2
      Seconds
  • Question 25 - A 45-year-old woman comes in with central chest pain that is spreading to...

    Correct

    • A 45-year-old woman comes in with central chest pain that is spreading to her left arm for the past 30 minutes. Her vital signs are as follows: heart rate of 80 beats per minute, blood pressure of 118/72, and oxygen saturation of 98% on room air. The ECG shows the following findings:
      ST depression in leads V1-V4 and aVR
      ST elevation in V5-V6, II, III, and aVF
      Positive R wave in V1 and V2
      What is the most likely diagnosis in this case?

      Your Answer: Acute inferoposterior myocardial infarction

      Explanation:

      The ECG shows the following findings:
      – There is ST depression in leads V1-V4 and aVR.
      – There is ST elevation in leads V5-V6, II, III, and aVF.
      – There is a positive R wave in leads V1 and V2, which indicates a reverse Q wave.
      These ECG changes indicate that there is an acute inferoposterior myocardial infarction.

    • This question is part of the following fields:

      • Cardiology
      148.2
      Seconds
  • Question 26 - A 60 year old female presents to the emergency department complaining of increasing...

    Correct

    • A 60 year old female presents to the emergency department complaining of increasing shortness of breath. The patient reports feeling more fatigued and breathless with minimal exertion over the past few months, but in the past few days, she has been experiencing breathlessness even at rest. She informs you that she has been taking aspirin, ramipril, bisoprolol, and rosuvastatin for the past 5 years since she had a minor heart attack. Upon examination, you observe prominent neck veins, bilateral lung crepitations that are worse at the bases, faint heart sounds, and pitting edema below the knee. The patient's vital signs are as follows:

      Blood pressure: 130/84 mmHg
      Pulse rate: 90 bpm
      Respiration rate: 23 bpm
      Temperature: 37.0ºC
      Oxygen saturation: 93% on room air

      What would be the most appropriate initial treatment for this patient?

      Your Answer: Furosemide 40 mg IV

      Explanation:

      Given the patient’s symptoms and physical findings, the most appropriate initial treatment would be to administer Furosemide 40 mg intravenously. Furosemide is a loop diuretic that helps remove excess fluid from the body, which can alleviate symptoms of fluid overload such as shortness of breath and edema. By reducing fluid volume, Furosemide can help improve the patient’s breathing and relieve the strain on the heart.

      Further Reading:

      Cardiac failure, also known as heart failure, is a clinical syndrome characterized by symptoms and signs resulting from abnormalities in the structure or function of the heart. This can lead to reduced cardiac output or high filling pressures at rest or with stress. Heart failure can be caused by various problems such as myocardial, valvular, pericardial, endocardial, or arrhythmic issues.

      The most common causes of heart failure in the UK are coronary heart disease and hypertension. However, there are many other possible causes, including valvular heart disease, structural heart disease, cardiomyopathies, certain drugs or toxins, endocrine disorders, nutritional deficiencies, infiltrative diseases, infections, and arrhythmias. Conditions that increase peripheral demand on the heart, such as anemia, pregnancy, sepsis, hyperthyroidism, Paget’s disease of bone, arteriovenous malformations, and beriberi, can also lead to high-output cardiac failure.

      Signs and symptoms of heart failure include edema, lung crepitations, tachycardia, tachypnea, hypotension, displaced apex beat, right ventricular heave, elevated jugular venous pressure, cyanosis, hepatomegaly, ascites, pleural effusions, breathlessness, fatigue, orthopnea, paroxysmal nocturnal dyspnea, nocturnal cough or wheeze, and Presyncope.

      To diagnose heart failure, NICE recommends three key tests: N-terminal pro-B-type natriuretic peptide (NT‑proBNP), transthoracic echocardiography, and ECG. Additional tests may include chest X-ray, blood tests (U&Es, thyroid function, LFT’s, lipid profile, HbA1C, FBC), urinalysis, and peak flow or spirometry.

      Management of cardiogenic pulmonary edema, a complication of heart failure, involves ensuring a patent airway, optimizing breathing with supplemental oxygen and non-invasive ventilation if necessary, and addressing circulation with loop diuretics to reduce preload, vasodilators to reduce preload and afterload, and inotropes if hypotension or signs of end organ hypoperfusion persist.

      In summary, cardiac failure is a clinical syndrome resulting from abnormalities in cardiac function. It can have various causes and is characterized by specific signs and symptoms. Diagnosis involves specific tests, and management focuses on addressing

    • This question is part of the following fields:

      • Cardiology
      34.1
      Seconds
  • Question 27 - Your hospital’s cardiology department is currently evaluating the utility of a triple marker...

    Correct

    • Your hospital’s cardiology department is currently evaluating the utility of a triple marker test for use risk stratification of patients with a suspected acute coronary syndrome. The test will use troponin I, myoglobin and heart-type fatty acid-binding protein (HFABP).

      How long after heart attack do troponin I levels return to normal?

      Your Answer: 3-10 days

      Explanation:

      The timing of the initial rise, peak, and return to normality of various cardiac enzymes can serve as a helpful guide. Creatine kinase, the main cardiac isoenzyme, typically experiences an initial rise within 4-8 hours, reaches its peak at 18 hours, and returns to normal within 2-3 days. Myoglobin, which lacks specificity due to its association with skeletal muscle damage, shows an initial rise within 1-4 hours, peaks at 6-7 hours, and returns to normal within 24 hours. Troponin I, known for its sensitivity and specificity, exhibits an initial rise within 3-12 hours, reaches its peak at 24 hours, and returns to normal within 3-10 days. HFABP, or heart fatty acid binding protein, experiences an initial rise within 1.5 hours, peaks at 5-10 hours, and returns to normal within 24 hours. Lastly, LDH, predominantly found in cardiac muscle, shows an initial rise at 10 hours, peaks at 24-48 hours, and returns to normal within 14 days.

    • This question is part of the following fields:

      • Cardiology
      36
      Seconds
  • Question 28 - You conduct a cardiovascular examination on a 62-year-old man who complains of shortness...

    Incorrect

    • You conduct a cardiovascular examination on a 62-year-old man who complains of shortness of breath. He informs you that he has a known heart valve issue. During auscultation, you observe reversed splitting of the second heart sound (S2).
      What is the most probable cause of this finding?

      Your Answer: Mitral regurgitation

      Correct Answer: Aortic stenosis

      Explanation:

      The second heart sound (S2) is created by vibrations produced when the aortic and pulmonary valves close. It marks the end of systole. It is normal to hear a split in the sound during inspiration.

      A loud S2 can be associated with certain conditions such as systemic hypertension (resulting in a loud A2), pulmonary hypertension (resulting in a loud P2), hyperdynamic states (like tachycardia, fever, or thyrotoxicosis), and atrial septal defect (which causes a loud P2).

      On the other hand, a soft S2 can be linked to decreased aortic diastolic pressure (as seen in aortic regurgitation), poorly mobile cusps (such as calcification of the aortic valve), aortic root dilatation, and pulmonary stenosis (which causes a soft P2).

      A widely split S2 can occur during deep inspiration, right bundle branch block, prolonged right ventricular systole (seen in conditions like pulmonary stenosis or pulmonary embolism), and severe mitral regurgitation. However, in the case of atrial septal defect, the splitting is fixed and does not vary with respiration.

      Reversed splitting of S2, where P2 occurs before A2 (paradoxical splitting), can occur during deep expiration, left bundle branch block, prolonged left ventricular systole (as seen in hypertrophic cardiomyopathy), severe aortic stenosis, and right ventricular pacing.

    • This question is part of the following fields:

      • Cardiology
      15.6
      Seconds
  • Question 29 - A 35-year-old woman with a history of paroxysmal supraventricular tachycardia is found to...

    Incorrect

    • A 35-year-old woman with a history of paroxysmal supraventricular tachycardia is found to have a diagnosis of Lown-Ganong-Levine (LGL) syndrome.
      Which of the following statements about LGL syndrome is NOT true?

      Your Answer: P waves are usually normal or inverted

      Correct Answer: It is caused by an accessory pathway for conduction

      Explanation:

      Lown-Ganong-Levine (LGL) syndrome is a condition that affects the electrical conducting system of the heart. It is classified as a pre-excitation syndrome, similar to the more well-known Wolff-Parkinson-White (WPW) syndrome. However, unlike WPW syndrome, LGL syndrome does not involve an accessory pathway for conduction. Instead, it is believed that there may be accessory fibers present that bypass all or part of the atrioventricular node.

      When looking at an electrocardiogram (ECG) of a patient with LGL syndrome in sinus rhythm, there are several characteristic features to observe. The PR interval, which represents the time it takes for the electrical signal to travel from the atria to the ventricles, is typically shortened and measures less than 120 milliseconds. The QRS duration, which represents the time it takes for the ventricles to contract, is normal. The P wave, which represents the electrical activity of the atria, may be normal or inverted. However, what distinguishes LGL syndrome from other pre-excitation syndromes is the absence of a delta wave, which is a slurring of the initial rise in the QRS complex.

      It is important to note that LGL syndrome predisposes individuals to paroxysmal supraventricular tachycardia (SVT), a rapid heart rhythm that originates above the ventricles. However, it does not increase the risk of developing atrial fibrillation or flutter, which are other types of abnormal heart rhythms.

    • This question is part of the following fields:

      • Cardiology
      31.6
      Seconds
  • Question 30 - A 25 year old female is brought to the emergency department with a...

    Correct

    • A 25 year old female is brought to the emergency department with a gunshot wound to the abdomen. You observe that the patient is breathing rapidly and her neck veins are distended. The trachea is centrally located. Her vital signs are as follows:

      Blood pressure: 88/56 mmHg
      Heart rate: 127 bpm
      Respiration rate: 28 rpm
      SpO2: 99% on 15L oxygen

      What is the probable diagnosis?

      Your Answer: Cardiac tamponade

      Explanation:

      Cardiac tamponade is characterized by several classical signs, including distended neck veins, muffled heart sounds, and hypotension. When neck veins are distended, it suggests that the right ventricle is not filling properly. In cases of trauma, this is often caused by the compression of air (tension pneumothorax) or fluid (blood in the pericardial space). One important distinguishing feature is the deviation of the trachea.

      Further Reading:

      Cardiac tamponade, also known as pericardial tamponade, occurs when fluid accumulates in the pericardial sac and compresses the heart, leading to compromised blood flow. Classic clinical signs of cardiac tamponade include distended neck veins, hypotension, muffled heart sounds, and pulseless electrical activity (PEA). Diagnosis is typically done through a FAST scan or an echocardiogram.

      Management of cardiac tamponade involves assessing for other injuries, administering IV fluids to reduce preload, performing pericardiocentesis (inserting a needle into the pericardial cavity to drain fluid), and potentially performing a thoracotomy. It is important to note that untreated expanding cardiac tamponade can progress to PEA cardiac arrest.

      Pericardiocentesis can be done using the subxiphoid approach or by inserting a needle between the 5th and 6th intercostal spaces at the left sternal border. Echo guidance is the gold standard for pericardiocentesis, but it may not be available in a resuscitation situation. Complications of pericardiocentesis include ST elevation or ventricular ectopics, myocardial perforation, bleeding, pneumothorax, arrhythmia, acute pulmonary edema, and acute ventricular dilatation.

      It is important to note that pericardiocentesis is typically used as a temporary measure until a thoracotomy can be performed. Recent articles published on the RCEM learning platform suggest that pericardiocentesis has a low success rate and may delay thoracotomy, so it is advised against unless there are no other options available.

    • This question is part of the following fields:

      • Cardiology
      56.1
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiology (22/30) 73%
Passmed