-
Question 1
Correct
-
A 35-year-old woman presents to the emergency department with neck pain after a car accident. After conducting a clinical examination and identifying a low-risk factor for cervical spine injury, you decide to order imaging for this patient. What type of imaging would you recommend?
Your Answer: CT cervical spine
Explanation:According to NICE guidelines, when it comes to imaging for cervical spine injury, CT is recommended as the primary modality for adults aged 16 and above, while MRI is recommended for children. This applies to patients who are either at high risk for cervical spine injury or are unable to actively rotate their neck 45 degrees to the left and right.
Further Reading:
When assessing for cervical spine injury, it is recommended to use the Canadian C-spine rules. These rules help determine the risk level for a potential injury. High-risk factors include being over the age of 65, experiencing a dangerous mechanism of injury (such as a fall from a height or a high-speed motor vehicle collision), or having paraesthesia in the upper or lower limbs. Low-risk factors include being involved in a minor rear-end motor vehicle collision, being comfortable in a sitting position, being ambulatory since the injury, having no midline cervical spine tenderness, or experiencing a delayed onset of neck pain. If a person is unable to actively rotate their neck 45 degrees to the left and right, their risk level is considered low. If they have one of the low-risk factors and can actively rotate their neck, their risk level remains low.
If a high-risk factor is identified or if a low-risk factor is identified and the person is unable to actively rotate their neck, full in-line spinal immobilization should be maintained and imaging should be requested. Additionally, if a patient has risk factors for thoracic or lumbar spine injury, imaging should be requested. However, if a patient has low-risk factors for cervical spine injury, is pain-free, and can actively rotate their neck, full in-line spinal immobilization and imaging are not necessary.
NICE recommends CT as the primary imaging modality for cervical spine injury in adults aged 16 and older, while MRI is recommended as the primary imaging modality for children under 16.
Different mechanisms of spinal trauma can cause injury to the spine in predictable ways. The majority of cervical spine injuries are caused by flexion combined with rotation. Hyperflexion can result in compression of the anterior aspects of the vertebral bodies, stretching and tearing of the posterior ligament complex, chance fractures (also known as seatbelt fractures), flexion teardrop fractures, and odontoid peg fractures. Flexion and rotation can lead to disruption of the posterior ligament complex and posterior column, fractures of facet joints, lamina, transverse processes, and vertebral bodies, and avulsion of spinous processes. Hyperextension can cause injury to the anterior column, anterior fractures of the vertebral body, and potential retropulsion of bony fragments or discs into the spinal canal. Rotation can result in injury to the posterior ligament complex and facet joint dislocation.
-
This question is part of the following fields:
- Trauma
-
-
Question 2
Correct
-
A 45-year-old individual is brought into the emergency department following a head injury from a ladder fall. The patient's condition worsens. You proceed to re-evaluate the patient's GCS. At what GCS range is intubation recommended?
Your Answer: 8 or less
Explanation:Intubation is necessary for patients with a compromised airway. In comatose patients, a Glasgow Coma Scale (GCS) score of 8 or less indicates the need for intubation. According to NICE guidelines, immediate intubation and ventilation are advised in cases of coma where the patient is not responsive to commands, not speaking, and not opening their eyes. Other indications for intubation include the loss of protective laryngeal reflexes, ventilatory insufficiency as indicated by abnormal blood gases, spontaneous hyperventilation, irregular respirations, significantly deteriorating conscious level, unstable fractures of the facial skeleton, copious bleeding into the mouth, and seizures. In certain cases, intubation and ventilation should be performed before the patient begins their journey.
Further Reading:
Indications for CT Scanning in Head Injuries (Adults):
– CT head scan should be performed within 1 hour if any of the following features are present:
– GCS < 13 on initial assessment in the ED
– GCS < 15 at 2 hours after the injury on assessment in the ED
– Suspected open or depressed skull fracture
– Any sign of basal skull fracture (haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, Battle’s sign)
– Post-traumatic seizure
– New focal neurological deficit
– > 1 episode of vomitingIndications for CT Scanning in Head Injuries (Children):
– CT head scan should be performed within 1 hour if any of the features in List 1 are present:
– Suspicion of non-accidental injury
– Post-traumatic seizure but no history of epilepsy
– GCS < 14 on initial assessment in the ED for children more than 1 year of age
– Paediatric GCS < 15 on initial assessment in the ED for children under 1 year of age
– At 2 hours after the injury, GCS < 15
– Suspected open or depressed skull fracture or tense fontanelle
– Any sign of basal skull fracture (haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, Battle’s sign)
– New focal neurological deficit
– For children under 1 year, presence of bruise, swelling or laceration of more than 5 cm on the head– CT head scan should be performed within 1 hour if none of the above features are present but two or more of the features in List 2 are present:
– Loss of consciousness lasting more than 5 minutes (witnessed)
– Abnormal drowsiness
– Three or more discrete episodes of vomiting
– Dangerous mechanism of injury (high-speed road traffic accident, fall from a height) -
This question is part of the following fields:
- Trauma
-
-
Question 3
Correct
-
A 48-year-old male presents to the emergency department following a workplace injury. He sustained a large contusion to the anterior abdominal wall after a pneumatic tool discharged into his abdomen. The patient's vital signs are as follows:
- Blood pressure: 92/60 mmHg
- Pulse rate: 104 bpm
- Temperature: 37.1ºC
- SpO2: 97% on air
Which imaging modality would be most appropriate for evaluating this patient with blunt abdominal trauma?Your Answer: FAST scan
Explanation:The preferred imaging method for unstable patients with blunt abdominal trauma is FAST scanning (Focused Assessment with Sonography in Trauma). It has replaced DPL as the imaging modality of choice. It is important to note that the primary purpose of a FAST scan is to detect intraperitoneal fluid, assumed to be blood, and guide the decision on whether a laparotomy is necessary. In this case, a CT scan is not recommended as the patient is unstable with tachycardia and hypotension. While CT is the most diagnostically accurate imaging technique, it requires a stable and cooperative patient.
Further Reading:
Abdominal trauma can be classified into two categories: blunt trauma and penetrating trauma. Blunt trauma occurs when compressive or deceleration forces are applied to the abdomen, often resulting from road traffic accidents or direct blows during sports. The spleen and liver are the organs most commonly injured in blunt abdominal trauma. On the other hand, penetrating trauma involves injuries that pierce the skin and enter the abdominal cavity, such as stabbings, gunshot wounds, or industrial accidents. The bowel and liver are the organs most commonly affected in penetrating injuries.
When it comes to imaging in blunt abdominal trauma, there are three main modalities that are commonly used: focused assessment with sonography in trauma (FAST), diagnostic peritoneal lavage (DPL), and computed tomography (CT). FAST is a non-invasive and quick method used to detect free intraperitoneal fluid, aiding in the decision on whether a laparotomy is needed. DPL is also used to detect intraperitoneal blood and can be used in both unstable blunt abdominal trauma and penetrating abdominal trauma. However, it is more invasive and time-consuming compared to FAST and has largely been replaced by it. CT, on the other hand, is the gold standard for diagnosing intra-abdominal pathology and is used in stable abdominal trauma patients. It offers high sensitivity and specificity but requires a stable and cooperative patient. It also involves radiation and may have delays in availability.
In the case of penetrating trauma, it is important to assess these injuries with the help of a surgical team. Penetrating objects should not be removed in the emergency department as they may be tamponading underlying vessels. Ideally, these injuries should be explored in the operating theater.
In summary, abdominal trauma can be classified into blunt trauma and penetrating trauma. Blunt trauma is caused by compressive or deceleration forces and commonly affects the spleen and liver. Penetrating trauma involves injuries that pierce the skin and commonly affect the bowel and liver. Imaging modalities such as FAST, DPL, and CT are used to assess and diagnose abdominal trauma, with CT being the gold standard. Penetrating injuries should be assessed by a surgical team and should ideally be explored in the operating theater.
-
This question is part of the following fields:
- Trauma
-
-
Question 4
Correct
-
A 42 year old man is brought into the emergency department after a car accident. He has significant bruising on the right side of his chest. You suspect he may have a hemothorax. When would thoracotomy be considered as a treatment option?
Your Answer: Prompt drainage of ≥1500 ml of blood following chest drain insertion
Explanation:Thoracotomy is recommended when there is a need for prompt drainage of at least 1500 ml of blood following the insertion of a chest drain. Additionally, it is indicated when there is a continuous blood loss of more than 200 ml per hour for a period of 2-4 hours or when there is a persistent requirement for blood transfusion.
Further Reading:
Haemothorax is the accumulation of blood in the pleural cavity of the chest, usually resulting from chest trauma. It can be difficult to differentiate from other causes of pleural effusion on a chest X-ray. Massive haemothorax refers to a large volume of blood in the pleural space, which can impair physiological function by causing blood loss, reducing lung volume for gas exchange, and compressing thoracic structures such as the heart and IVC.
The management of haemothorax involves replacing lost blood volume and decompressing the chest. This is done through supplemental oxygen, IV access and cross-matching blood, IV fluid therapy, and the insertion of a chest tube. The chest tube is connected to an underwater seal and helps drain the fluid, pus, air, or blood from the pleural space. In cases where there is prompt drainage of a large amount of blood, ongoing significant blood loss, or the need for blood transfusion, thoracotomy and ligation of bleeding thoracic vessels may be necessary. It is important to have two IV accesses prior to inserting the chest drain to prevent a drop in blood pressure.
In summary, haemothorax is the accumulation of blood in the pleural cavity due to chest trauma. Managing haemothorax involves replacing lost blood volume and decompressing the chest through various interventions, including the insertion of a chest tube. Prompt intervention may be required in cases of significant blood loss or ongoing need for blood transfusion.
-
This question is part of the following fields:
- Trauma
-
-
Question 5
Correct
-
A 21 year old patient is brought into the emergency department with burns to the left arm. The patient informs you that one of their friends had accidentally set their sleeve on fire with a lighter, causing the material to quickly burn and stick to their skin. The patient's entire left arm is burned, with the front part experiencing superficial partial thickness burns and the back part having areas of deep partial thickness and full thickness burns. What is the estimated total body surface area of burn in this patient?
Your Answer: 9%
Explanation:To estimate the total body surface area of burn, we need to consider the rule of nines. This rule divides the body into different regions, each representing a certain percentage of the total body surface area. According to the rule of nines, the left arm accounts for 9% of the total body surface area. Therefore, the estimated total body surface area of burn in this patient is 9%.
Further Reading:
Burn injuries can be classified based on their type (degree, partial thickness or full thickness), extent as a percentage of total body surface area (TBSA), and severity (minor, moderate, major/severe). Severe burns are defined as a >10% TBSA in a child and >15% TBSA in an adult.
When assessing a burn, it is important to consider airway injury, carbon monoxide poisoning, type of burn, extent of burn, special considerations, and fluid status. Special considerations may include head and neck burns, circumferential burns, thorax burns, electrical burns, hand burns, and burns to the genitalia.
Airway management is a priority in burn injuries. Inhalation of hot particles can cause damage to the respiratory epithelium and lead to airway compromise. Signs of inhalation injury include visible burns or erythema to the face, soot around the nostrils and mouth, burnt/singed nasal hairs, hoarse voice, wheeze or stridor, swollen tissues in the mouth or nostrils, and tachypnea and tachycardia. Supplemental oxygen should be provided, and endotracheal intubation may be necessary if there is airway obstruction or impending obstruction.
The initial management of a patient with burn injuries involves conserving body heat, covering burns with clean or sterile coverings, establishing IV access, providing pain relief, initiating fluid resuscitation, measuring urinary output with a catheter, maintaining nil by mouth status, closely monitoring vital signs and urine output, monitoring the airway, preparing for surgery if necessary, and administering medications.
Burns can be classified based on the depth of injury, ranging from simple erythema to full thickness burns that penetrate into subcutaneous tissue. The extent of a burn can be estimated using methods such as the rule of nines or the Lund and Browder chart, which takes into account age-specific body proportions.
Fluid management is crucial in burn injuries due to significant fluid losses. Evaporative fluid loss from burnt skin and increased permeability of blood vessels can lead to reduced intravascular volume and tissue perfusion. Fluid resuscitation should be aggressive in severe burns, while burns <15% in adults and <10% in children may not require immediate fluid resuscitation. The Parkland formula can be used to calculate the intravenous fluid requirements for someone with a significant burn injury.
-
This question is part of the following fields:
- Trauma
-
-
Question 6
Incorrect
-
A 25 year old male is brought to the emergency department by the police. The man tried to evade capture by leaping from a ground floor window. The patient reports that both of his feet are hurting, but the left foot is significantly more painful than the right. The patient exhibits tenderness in the left heel, leading you to suspect a calcaneus fracture. Which of the following statements about calcaneus fractures is accurate?
Your Answer: Vertebral fractures present in 25% of patients with calcaneal fractures
Correct Answer: Contralateral calcaneus fractures are present in 10% of patients
Explanation:Fractures that extend into the calcaneocuboid joint are commonly intra-articular. It is recommended to refer patients to orthopaedics for further evaluation and treatment. Conservative management usually involves keeping the patient non-weight bearing for a period of 6-12 weeks.
Further Reading:
Calcaneus fractures are a common type of lower limb and joint injury. The calcaneus, or heel bone, is the most frequently fractured tarsal bone. These fractures are often intra-articular, meaning they involve the joint. The most common cause of calcaneus fractures is a fall or jump from a height.
When assessing calcaneus fractures, X-rays are used to visualize the fracture lines. Two angles are commonly assessed to determine the severity of the fracture. Böhler’s angle, which measures the angle between two tangent lines drawn across the anterior and posterior borders of the calcaneus, should be between 20-40 degrees. If it is less than 20 degrees, it indicates a calcaneal fracture with flattening. The angle of Gissane, which measures the depression of the posterior facet of the subtalar joint, should be between 120-145 degrees. An increased angle of Gissane suggests a calcaneal fracture.
In the emergency department, the management of a fractured calcaneus involves identifying the injury and any associated injuries, providing pain relief, elevating the affected limb(s), and referring the patient to an orthopedic specialist. It is important to be aware that calcaneus fractures are often accompanied by other injuries, such as bilateral fractures of vertebral fractures.
The definitive management of a fractured calcaneus can be done conservatively or through surgery, specifically open reduction internal fixation (ORIF). The orthopedic team will typically order a CT or MRI scan to classify the fracture and determine the most appropriate treatment. However, a recent UK heel fracture trial suggests that in most cases, ORIF does not improve fracture outcomes.
-
This question is part of the following fields:
- Trauma
-
-
Question 7
Correct
-
A 32-year-old woman was involved in a car accident where her car collided with a tree at a high speed. She was not wearing a seatbelt and was thrown forward onto the steering wheel of her car. She has bruising over her anterior chest wall and is experiencing chest pain. A helical contrast-enhanced CT scan of the chest reveals a traumatic aortic injury.
Where is her injury most likely to have occurred anatomically?Your Answer: Proximal descending aorta
Explanation:Traumatic aortic rupture, also known as traumatic aortic disruption or transection, occurs when the aorta is torn or ruptured due to physical trauma. This condition often leads to sudden death because of severe bleeding. Motor vehicle accidents and falls from great heights are the most common causes of this injury.
The patients with the highest chances of survival are those who have an incomplete tear near the ligamentum arteriosum of the proximal descending aorta, close to where the left subclavian artery branches off. The presence of an intact adventitial layer or contained mediastinal hematoma helps maintain continuity and prevents immediate bleeding and death. If promptly identified and treated, survivors of these injuries can recover. In cases where traumatic aortic rupture leads to sudden death, approximately 50% of patients have damage at the aortic isthmus, while around 15% have damage in either the ascending aorta or the aortic arch.
Initial chest X-rays may show signs consistent with a traumatic aortic injury. However, false-positive and false-negative results can occur, and sometimes there may be no abnormalities visible on the X-ray. Some of the possible X-ray findings include a widened mediastinum, hazy left lung field, obliteration of the aortic knob, fractures of the 1st and 2nd ribs, deviation of the trachea to the right, presence of a pleural cap, elevation and rightward shift of the right mainstem bronchus, depression of the left mainstem bronchus, obliteration of the space between the pulmonary artery and aorta, and deviation of the esophagus or NG tube to the right.
A helical contrast-enhanced CT scan of the chest is the preferred initial investigation for suspected blunt aortic injury. It has proven to be highly accurate, with close to 100% sensitivity and specificity. CT scanning should be performed liberally, as chest X-ray findings can be unreliable. However, hemodynamically unstable patients should not be placed in a CT scanner. If the CT results are inconclusive, aortography or trans-oesophageal echo can be performed for further evaluation.
Immediate surgical intervention is necessary for these injuries. Endovascular repair is the most common method used and has excellent short-term outcomes. Open repair may also be performed depending on the circumstances. It is important to control heart rate and blood pressure during stabilization to reduce the risk of rupture. Pain should be managed with appropriate analgesic
-
This question is part of the following fields:
- Trauma
-
-
Question 8
Correct
-
A 42-year-old man was involved in a car accident where his vehicle collided with a wall. He was rescued at the scene and has been brought to the hospital by ambulance. He is currently wearing a cervical immobilization device. He is experiencing chest pain on the left side and difficulty breathing. As the leader of the trauma response team, his vital signs are as follows: heart rate 110, blood pressure 102/63, oxygen saturation 90% on room air. His Glasgow Coma Scale score is 15 out of 15. Upon examination, he has extensive bruising on the left side of his chest, reduced chest expansion, dullness to percussion, and decreased breath sounds throughout the entire left side of his chest. He is receiving high-flow oxygen and a blood transfusion of his specific blood type has been initiated.
What is the most appropriate next step in managing his condition?Your Answer: Chest drain insertion
Explanation:A massive haemothorax occurs when more than 1500 mL of blood, which is about 1/3 of the patient’s blood volume, rapidly accumulates in the chest cavity. The classic signs of a massive haemothorax include decreased chest expansion, decreased breath sounds, and dullness to percussion. Both tension pneumothorax and massive haemothorax can cause decreased breath sounds, but they can be differentiated through percussion. Hyperresonance indicates tension pneumothorax, while dullness suggests a massive haemothorax.
The first step in managing a massive haemothorax is to simultaneously restore blood volume and decompress the chest cavity by inserting a chest drain. In most cases, the bleeding in a haemothorax has already stopped by the time management begins, and simple drainage is sufficient. It is important to use a chest drain of adequate size (preferably 36F) to ensure effective drainage of the haemothorax without clotting.
If 1500 mL of blood is immediately drained or if the rate of ongoing blood loss exceeds 200 mL per hour for 2-4 hours, early thoracotomy should be considered.
-
This question is part of the following fields:
- Trauma
-
-
Question 9
Correct
-
A trauma patient has arrived at the emergency department for evaluation. There is worry about a potential cervical spine injury. What criteria would classify the patient as high risk for cervical spine injury?
Your Answer: Age ≥ 65
Explanation:When assessing for cervical spine injury, it is recommended to use the Canadian C-spine rules. These rules help determine the risk level for a potential injury. High-risk factors include being over the age of 65, experiencing a dangerous mechanism of injury (such as a fall from a height or a high-speed motor vehicle collision), or having paraesthesia in the upper or lower limbs. Low-risk factors include being involved in a minor rear-end motor vehicle collision, being comfortable in a sitting position, being ambulatory since the injury, having no midline cervical spine tenderness, or experiencing a delayed onset of neck pain. If a person is unable to actively rotate their neck 45 degrees to the left and right, their risk level is considered low. If they have one of the low-risk factors and can actively rotate their neck, their risk level remains low.
If a high-risk factor is identified or if a low-risk factor is identified and the person is unable to actively rotate their neck, full in-line spinal immobilization should be maintained and imaging should be requested. Additionally, if a patient has risk factors for thoracic or lumbar spine injury, imaging should be requested. However, if a patient has low-risk factors for cervical spine injury, is pain-free, and can actively rotate their neck, full in-line spinal immobilization and imaging are not necessary.
NICE recommends CT as the primary imaging modality for cervical spine injury in adults aged 16 and older, while MRI is recommended as the primary imaging modality for children under 16.
Different mechanisms of spinal trauma can cause injury to the spine in predictable ways. The majority of cervical spine injuries are caused by flexion combined with rotation. Hyperflexion can result in compression of the anterior aspects of the vertebral bodies, stretching and tearing of the posterior ligament complex, chance fractures (also known as seatbelt fractures), flexion teardrop fractures, and odontoid peg fractures. Flexion and rotation can lead to disruption of the posterior ligament complex and posterior column, fractures of facet joints, lamina, transverse processes, and vertebral bodies, and avulsion of spinous processes. Hyperextension can cause injury to the anterior column, anterior fractures of the vertebral body, and potential retropulsion of bony fragments or discs into the spinal canal. Rotation can result in injury to the posterior ligament complex and facet joint dislocation.
-
This question is part of the following fields:
- Trauma
-
-
Question 10
Correct
-
A 35-year-old woman is brought in by ambulance following a car accident where her car was hit by a truck. She has sustained severe facial injuries and shows signs of airway obstruction. Her cervical spine is immobilized. The anesthesiologist has tried to intubate her but is unsuccessful and decides to perform a surgical cricothyroidotomy.
Which of the following statements about surgical cricothyroidotomy is correct?Your Answer: It is contraindicated in the presence of a laryngeal fracture
Explanation:A surgical cricothyroidotomy is a procedure performed in emergency situations to secure the airway by making an incision in the cricothyroid membrane. It is also known as an emergency surgical airway (ESA) and is typically done when intubation and oxygenation are not possible.
There are certain conditions in which a surgical cricothyroidotomy should not be performed. These include patients who are under 12 years old, those with laryngeal fractures or pre-existing or acute laryngeal pathology, individuals with tracheal transection and retraction of the trachea into the mediastinum, and cases where the anatomical landmarks are obscured due to trauma.
The procedure is carried out in the following steps:
1. Gathering and preparing the necessary equipment.
2. Positioning the patient on their back with the neck in a neutral position.
3. Sterilizing the patient’s neck using antiseptic swabs.
4. Administering local anesthesia, if time permits.
5. Locating the cricothyroid membrane, which is situated between the thyroid and cricoid cartilage.
6. Stabilizing the trachea with the left hand until it can be intubated.
7. Making a transverse incision through the cricothyroid membrane.
8. Inserting the scalpel handle into the incision and rotating it 90°. Alternatively, a haemostat can be used to open the airway.
9. Placing a properly-sized, cuffed endotracheal tube (usually a size 5 or 6) into the incision, directing it into the trachea.
10. Inflating the cuff and providing ventilation.
11. Monitoring for chest rise and auscultating the chest to ensure adequate ventilation.
12. Securing the airway to prevent displacement.Potential complications of a surgical cricothyroidotomy include aspiration of blood, creation of a false passage into the tissues, subglottic stenosis or edema, laryngeal stenosis, hemorrhage or hematoma formation, laceration of the esophagus or trachea, mediastinal emphysema, and vocal cord paralysis or hoarseness.
-
This question is part of the following fields:
- Trauma
-
-
Question 11
Correct
-
A 42-year-old woman is brought in by ambulance following a high-speed car accident. There was a prolonged extraction at the scene, and a full trauma call is made. She is disoriented and slightly restless. Her vital signs are as follows: heart rate 125, blood pressure 83/45, oxygen saturation 98% on high-flow oxygen, respiratory rate 31, temperature 36.1°C. Her capillary refill time is 5 seconds, and her extremities appear pale and cool to the touch. Her cervical spine is immobilized with triple precautions. The airway is clear, and her chest examination is normal. Two large-bore needles have been inserted in her antecubital fossa, and a complete set of blood tests, including a request for a cross-match, has been sent to the laboratory. She experiences significant tenderness in the suprapubic area upon abdominal palpation, and noticeable bruising is evident around her pelvis. A pelvic X-ray reveals a vertical shear type pelvic fracture.
What approximate percentage of her circulatory volume has she lost?Your Answer: 30-40%
Explanation:This patient is currently experiencing moderate shock, classified as class III. This level of shock corresponds to a loss of 30-40% of their circulatory volume, which is equivalent to a blood loss of 1500-2000 mL.
Hemorrhage can be categorized into four different classes based on physiological parameters and clinical signs. These classes are classified as class I, class II, class III, and class IV.
In class I hemorrhage, the blood loss is up to 750 mL or up to 15% of the blood volume. The pulse rate is less than 100 beats per minute, and the systolic blood pressure is normal. The pulse pressure may be normal or increased, and the respiratory rate is within the range of 14-20 breaths per minute. The urine output is greater than 30 mL per hour, and the patient’s CNS/mental status is slightly anxious.
In class II hemorrhage, the blood loss ranges from 750-1500 mL or 15-30% of the blood volume. The pulse rate is between 100-120 beats per minute, and the systolic blood pressure remains normal. The pulse pressure is decreased, and the respiratory rate increases to 20-30 breaths per minute. The urine output decreases to 20-30 mL per hour, and the patient may experience mild anxiety.
The patient in this case is in class III hemorrhage, with a blood loss of 1500-2000 mL or 30-40% of the blood volume. The pulse rate is elevated, ranging from 120-140 beats per minute, and the systolic blood pressure is decreased. The pulse pressure is also decreased, and the respiratory rate is elevated to 30-40 breaths per minute. The urine output decreases significantly to 5-15 mL per hour, and the patient may experience anxiety and confusion.
Class IV hemorrhage represents the most severe level of blood loss, with a loss of over 40% of the blood volume. The pulse rate is greater than 140 beats per minute, and the systolic blood pressure is significantly decreased. The pulse pressure is decreased, and the respiratory rate is over 40 breaths per minute. The urine output becomes negligible, and the patient may become confused and lethargic.
-
This question is part of the following fields:
- Trauma
-
-
Question 12
Correct
-
A 45 year old male is brought into the emergency department following a car crash. There is significant bruising on the right side of the chest. You suspect the patient has a haemothorax. What are the two main objectives in managing this condition?
Your Answer: Replace lost circulating blood volume and decompression of the pleural space
Explanation:The main objectives in managing haemothorax are to restore the lost blood volume and relieve pressure in the pleural space. These actions are crucial for improving the patient’s oxygen levels.
Further Reading:
Haemothorax is the accumulation of blood in the pleural cavity of the chest, usually resulting from chest trauma. It can be difficult to differentiate from other causes of pleural effusion on a chest X-ray. Massive haemothorax refers to a large volume of blood in the pleural space, which can impair physiological function by causing blood loss, reducing lung volume for gas exchange, and compressing thoracic structures such as the heart and IVC.
The management of haemothorax involves replacing lost blood volume and decompressing the chest. This is done through supplemental oxygen, IV access and cross-matching blood, IV fluid therapy, and the insertion of a chest tube. The chest tube is connected to an underwater seal and helps drain the fluid, pus, air, or blood from the pleural space. In cases where there is prompt drainage of a large amount of blood, ongoing significant blood loss, or the need for blood transfusion, thoracotomy and ligation of bleeding thoracic vessels may be necessary. It is important to have two IV accesses prior to inserting the chest drain to prevent a drop in blood pressure.
In summary, haemothorax is the accumulation of blood in the pleural cavity due to chest trauma. Managing haemothorax involves replacing lost blood volume and decompressing the chest through various interventions, including the insertion of a chest tube. Prompt intervention may be required in cases of significant blood loss or ongoing need for blood transfusion.
-
This question is part of the following fields:
- Trauma
-
-
Question 13
Correct
-
A 45-year-old woman is brought into the emergency room by an ambulance with sirens blaring after being involved in a car accident. She was hit by a truck while crossing the street and is suspected to have a pelvic injury. Her condition is unstable, and the hospital has activated the massive transfusion protocol. You decide to also administer tranexamic acid and give an initial dose of 1 g intravenously over a period of 10 minutes.
What should be the subsequent dose of tranexamic acid and how long should it be administered for?Your Answer: 1 g IV over 8 hours
Explanation:ATLS guidelines now suggest administering only 1 liter of crystalloid fluid during the initial assessment. If patients do not respond to the crystalloid, it is recommended to quickly transition to blood products. Studies have shown that infusing more than 1.5 liters of crystalloid fluid is associated with higher mortality rates in trauma cases. Therefore, it is advised to prioritize the early use of blood products and avoid large volumes of crystalloid fluid in trauma patients. In cases where it is necessary, massive transfusion should be considered, defined as the transfusion of more than 10 units of blood in 24 hours or more than 4 units of blood in one hour. For patients with evidence of Class III and IV hemorrhage, early resuscitation with blood and blood products in low ratios is recommended.
Based on the findings of significant trials, such as the CRASH-2 study, the use of tranexamic acid is now recommended within 3 hours. This involves administering a loading dose of 1 gram intravenously over 10 minutes, followed by an infusion of 1 gram over eight hours. In some regions, tranexamic acid is also being utilized in the prehospital setting.
-
This question is part of the following fields:
- Trauma
-
-
Question 14
Incorrect
-
A 5-year-old child is brought into the emergency room by an ambulance with sirens blaring. The child has been in a house fire and has sustained severe burns. The anesthesiologist examines the child's airway and is worried about the potential for airway blockage. Intubation is scheduled for the patient, and the necessary equipment is being prepared.
As per the ATLS recommendations, what is the smallest internal diameter endotracheal tube that should be utilized?Your Answer: 5.0 mm
Correct Answer: 4.5 mm
Explanation:Patients who have suffered burns should receive high-flow oxygen (15 L) through a reservoir bag while their breathing is being evaluated. If intubation is necessary, it is crucial to use an appropriately sized endotracheal tube (ETT). Using a tube that is too small can make it difficult or even impossible to ventilate the patient, clear secretions, or perform bronchoscopy.
According to the ATLS guidelines, adults should be intubated using an ETT with an internal diameter (ID) of at least 7.5 mm or larger. Children, on the other hand, should have an ETT with an ID of at least 4.5 mm. Once a patient has been intubated, it is important to continue administering 100% oxygen until their carboxyhemoglobin levels drop to less than 5%.
To protect the lungs, it is recommended to use lung protective ventilation techniques. This involves using low tidal volumes (4-8 mL/kg) and ensuring that peak inspiratory pressures do not exceed 30 cmH2O.
-
This question is part of the following fields:
- Trauma
-
-
Question 15
Correct
-
A 35 year old female is brought into the emergency department with chest injuries after a canister was thrown into a fire and the explosive projectile struck the patient's chest wall. On examination, there is asymmetry of the chest. You observe that the chest wall moves inward during inhalation and outward during expiration.
What is the term for this clinical sign?Your Answer: Paradoxical breathing
Explanation:The patient in this scenario is exhibiting a clinical sign known as paradoxical breathing. This is characterized by an abnormal movement of the chest wall during respiration. Normally, the chest expands during inhalation and contracts during exhalation. However, in paradoxical breathing, the opposite occurs. The chest wall moves inward during inhalation and outward during exhalation. This can be seen in cases of chest trauma or injury, where there is a disruption in the normal mechanics of breathing.
Further Reading:
Flail chest is a serious condition that occurs when multiple ribs are fractured in two or more places, causing a segment of the ribcage to no longer expand properly. This condition is typically caused by high-impact thoracic blunt trauma and is often accompanied by other significant injuries to the chest.
The main symptom of flail chest is a chest deformity, where the affected area moves in a paradoxical manner compared to the rest of the ribcage. This can cause chest pain and difficulty breathing, known as dyspnea. X-rays may also show evidence of lung contusion, indicating further damage to the chest.
In terms of management, conservative treatment is usually the first approach. This involves providing adequate pain relief and respiratory support to the patient. However, if there are associated injuries such as a pneumothorax or hemothorax, specific interventions like thoracostomy or surgery may be necessary.
Positive pressure ventilation can be used to provide internal splinting of the airways, helping to prevent atelectasis, a condition where the lungs collapse. Overall, prompt and appropriate management is crucial in order to prevent further complications and improve the patient’s outcome.
-
This question is part of the following fields:
- Trauma
-
-
Question 16
Correct
-
A 35-year-old woman is involved in a car accident. Her observations are taken one hour after arriving in the Emergency Department. Her pulse rate is 110 bpm, BP is 120/80 mmHg, respiratory rate 20 breaths/minute, and her urine output over the past hour has been 30 ml. She is currently mildly anxious. The patient weighs approximately 65 kg.
How would you classify her haemorrhage according to the ATLS haemorrhagic shock classification?Your Answer: Class II
Explanation:This patient is showing a slightly elevated heart rate and respiratory rate, as well as a slightly reduced urine output. These signs indicate that the patient has experienced a class II haemorrhage at this point. It is important to be able to recognize the degree of blood loss based on vital sign and mental status abnormalities. The Advanced Trauma Life Support (ATLS) haemorrhagic shock classification provides a way to link the amount of blood loss to expected physiological responses in a healthy 70 kg patient. In a 70 kg male patient, the total circulating blood volume is approximately five liters, which accounts for about 7% of their total body weight.
The ATLS haemorrhagic shock classification is summarized as follows:
CLASS I:
– Blood loss: Up to 750 mL
– Blood loss (% blood volume): Up to 15%
– Pulse rate: Less than 100 bpm
– Systolic BP: Normal
– Pulse pressure: Normal (or increased)
– Respiratory rate: 14-20 breaths per minute
– Urine output: Greater than 30 mL/hr
– CNS/mental status: Slightly anxiousCLASS II:
– Blood loss: 750-1500 mL
– Blood loss (% blood volume): 15-30%
– Pulse rate: 100-120 bpm
– Systolic BP: Normal
– Pulse pressure: Decreased
– Respiratory rate: 20-30 breaths per minute
– Urine output: 20-30 mL/hr
– CNS/mental status: Mildly anxiousCLASS III:
– Blood loss: 1500-2000 mL
– Blood loss (% blood volume): 30-40%
– Pulse rate: 120-140 bpm
– Systolic BP: Decreased
– Pulse pressure: Decreased
– Respiratory rate: 30-40 breaths per minute
– Urine output: 5-15 mL/hr
– CNS/mental status: Anxious, confusedCLASS IV:
– Blood loss: More than 2000 mL
– Blood loss (% blood volume): More than 40%
– Pulse rate: More than 140 bpm
– Systolic BP: Decreased
– Pulse pressure: Decreased
– Respiratory rate: More than 40 breaths per minute
– Urine output: Negligible
– CNS/mental status: Confused, lethargic -
This question is part of the following fields:
- Trauma
-
-
Question 17
Correct
-
A 32 year old male is brought into the emergency department following a car accident. You evaluate the patient's risk of cervical spine injury using the Canadian C-spine rule. What is included in the assessment for the Canadian C-spine rule?
Your Answer: Ask patient to rotate their neck 45 degrees to the left and right
Explanation:The Canadian C-spine assessment includes evaluating for tenderness along the midline of the spine, checking for any abnormal sensations in the limbs, and assessing the ability to rotate the neck 45 degrees to the left and right. While a significant portion of the assessment relies on gathering information from the patient’s history, there are also physical examination components involved. These include testing for tenderness along the midline of the cervical spine, asking the patient to perform neck rotations, ensuring they are comfortable in a sitting position, and assessing for any sensory deficits in the limbs. It is important to note that any reported paraesthesia in the upper or lower limbs can also be taken into consideration during the assessment.
Further Reading:
When assessing for cervical spine injury, it is recommended to use the Canadian C-spine rules. These rules help determine the risk level for a potential injury. High-risk factors include being over the age of 65, experiencing a dangerous mechanism of injury (such as a fall from a height or a high-speed motor vehicle collision), or having paraesthesia in the upper or lower limbs. Low-risk factors include being involved in a minor rear-end motor vehicle collision, being comfortable in a sitting position, being ambulatory since the injury, having no midline cervical spine tenderness, or experiencing a delayed onset of neck pain. If a person is unable to actively rotate their neck 45 degrees to the left and right, their risk level is considered low. If they have one of the low-risk factors and can actively rotate their neck, their risk level remains low.
If a high-risk factor is identified or if a low-risk factor is identified and the person is unable to actively rotate their neck, full in-line spinal immobilization should be maintained and imaging should be requested. Additionally, if a patient has risk factors for thoracic or lumbar spine injury, imaging should be requested. However, if a patient has low-risk factors for cervical spine injury, is pain-free, and can actively rotate their neck, full in-line spinal immobilization and imaging are not necessary.
NICE recommends CT as the primary imaging modality for cervical spine injury in adults aged 16 and older, while MRI is recommended as the primary imaging modality for children under 16.
Different mechanisms of spinal trauma can cause injury to the spine in predictable ways. The majority of cervical spine injuries are caused by flexion combined with rotation. Hyperflexion can result in compression of the anterior aspects of the vertebral bodies, stretching and tearing of the posterior ligament complex, chance fractures (also known as seatbelt fractures), flexion teardrop fractures, and odontoid peg fractures. Flexion and rotation can lead to disruption of the posterior ligament complex and posterior column, fractures of facet joints, lamina, transverse processes, and vertebral bodies, and avulsion of spinous processes. Hyperextension can cause injury to the anterior column, anterior fractures of the vertebral body, and potential retropulsion of bony fragments or discs into the spinal canal. Rotation can result in injury to the posterior ligament complex and facet joint dislocation.
-
This question is part of the following fields:
- Trauma
-
-
Question 18
Correct
-
A 35-year-old woman who has been involved in a car accident is estimated to have suffered a class I haemorrhage according to the Advanced Trauma Life Support (ATLS) haemorrhagic shock classification. The patient weighs approximately 60 kg.
Which of the following physiological parameters is consistent with a diagnosis of class I haemorrhage?Your Answer: Increased pulse pressure
Explanation:Recognizing the extent of blood loss based on vital sign and mental status abnormalities is a crucial skill. The Advanced Trauma Life Support (ATLS) classification for hemorrhagic shock correlates the amount of blood loss with expected physiological responses in a healthy individual weighing 70 kg. In terms of body weight, the total circulating blood volume accounts for approximately 7%, which is roughly equivalent to five liters in an average 70 kg male patient.
The ATLS classification for hemorrhagic shock is as follows:
CLASS I:
– Blood loss: Up to 750 mL
– Blood loss (% blood volume): Up to 15%
– Pulse rate: Less than 100 beats per minute (bpm)
– Systolic blood pressure: Normal
– Pulse pressure: Normal (or increased)
– Respiratory rate: 14-20 breaths per minute
– Urine output: Greater than 30 mL/hr
– CNS/mental status: Slightly anxiousCLASS II:
– Blood loss: 750-1500 mL
– Blood loss (% blood volume): 15-30%
– Pulse rate: 100-120 bpm
– Systolic blood pressure: Normal
– Pulse pressure: Decreased
– Respiratory rate: 20-30 breaths per minute
– Urine output: 20-30 mL/hr
– CNS/mental status: Mildly anxiousCLASS III:
– Blood loss: 1500-2000 mL
– Blood loss (% blood volume): 30-40%
– Pulse rate: 120-140 bpm
– Systolic blood pressure: Decreased
– Pulse pressure: Decreased
– Respiratory rate: 30-40 breaths per minute
– Urine output: 5-15 mL/hr
– CNS/mental status: Anxious, confusedCLASS IV:
– Blood loss: More than 2000 mL
– Blood loss (% blood volume): More than 40%
– Pulse rate: More than 140 bpm
– Systolic blood pressure: Decreased
– Pulse pressure: Decreased
– Respiratory rate: More than 40 breaths per minute
– Urine output: Negligible
– CNS/mental status: Confused, lethargic -
This question is part of the following fields:
- Trauma
-
-
Question 19
Incorrect
-
You are overseeing the care of a 70-year-old male who suffered extensive burns in a residential fire. After careful calculation, you have determined that the patient will require 6 liters of fluid over the course of the next 24 hours. Which intravenous fluid would be the most suitable to prescribe?
Your Answer: 0.9% Saline
Correct Answer: Hartmann's solution
Explanation:When it comes to managing acute burns, Hartmann’s or lactated Ringers are the preferred intravenous fluids. There is no scientific evidence to support the use of colloids in burn management. In the United Kingdom, Hartmann’s solution is the most commonly used fluid for this purpose.
Further Reading:
Burn injuries can be classified based on their type (degree, partial thickness or full thickness), extent as a percentage of total body surface area (TBSA), and severity (minor, moderate, major/severe). Severe burns are defined as a >10% TBSA in a child and >15% TBSA in an adult.
When assessing a burn, it is important to consider airway injury, carbon monoxide poisoning, type of burn, extent of burn, special considerations, and fluid status. Special considerations may include head and neck burns, circumferential burns, thorax burns, electrical burns, hand burns, and burns to the genitalia.
Airway management is a priority in burn injuries. Inhalation of hot particles can cause damage to the respiratory epithelium and lead to airway compromise. Signs of inhalation injury include visible burns or erythema to the face, soot around the nostrils and mouth, burnt/singed nasal hairs, hoarse voice, wheeze or stridor, swollen tissues in the mouth or nostrils, and tachypnea and tachycardia. Supplemental oxygen should be provided, and endotracheal intubation may be necessary if there is airway obstruction or impending obstruction.
The initial management of a patient with burn injuries involves conserving body heat, covering burns with clean or sterile coverings, establishing IV access, providing pain relief, initiating fluid resuscitation, measuring urinary output with a catheter, maintaining nil by mouth status, closely monitoring vital signs and urine output, monitoring the airway, preparing for surgery if necessary, and administering medications.
Burns can be classified based on the depth of injury, ranging from simple erythema to full thickness burns that penetrate into subcutaneous tissue. The extent of a burn can be estimated using methods such as the rule of nines or the Lund and Browder chart, which takes into account age-specific body proportions.
Fluid management is crucial in burn injuries due to significant fluid losses. Evaporative fluid loss from burnt skin and increased permeability of blood vessels can lead to reduced intravascular volume and tissue perfusion. Fluid resuscitation should be aggressive in severe burns, while burns <15% in adults and <10% in children may not require immediate fluid resuscitation. The Parkland formula can be used to calculate the intravenous fluid requirements for someone with a significant burn injury.
-
This question is part of the following fields:
- Trauma
-
-
Question 20
Incorrect
-
You are caring for a polytrauma patient with a penetrating chest injury. The FAST scan shows cardiac tamponade. If left untreated, expanding cardiac tamponade can lead to which of the following arrhythmias?
Your Answer: Ventricular tachycardia
Correct Answer: Pulseless electrical activity
Explanation:If a polytrauma patient with a penetrating chest injury has an expanding cardiac tamponade that is left untreated, it can potentially lead to pulseless electrical activity.
Further Reading:
Cardiac tamponade, also known as pericardial tamponade, occurs when fluid accumulates in the pericardial sac and compresses the heart, leading to compromised blood flow. Classic clinical signs of cardiac tamponade include distended neck veins, hypotension, muffled heart sounds, and pulseless electrical activity (PEA). Diagnosis is typically done through a FAST scan or an echocardiogram.
Management of cardiac tamponade involves assessing for other injuries, administering IV fluids to reduce preload, performing pericardiocentesis (inserting a needle into the pericardial cavity to drain fluid), and potentially performing a thoracotomy. It is important to note that untreated expanding cardiac tamponade can progress to PEA cardiac arrest.
Pericardiocentesis can be done using the subxiphoid approach or by inserting a needle between the 5th and 6th intercostal spaces at the left sternal border. Echo guidance is the gold standard for pericardiocentesis, but it may not be available in a resuscitation situation. Complications of pericardiocentesis include ST elevation or ventricular ectopics, myocardial perforation, bleeding, pneumothorax, arrhythmia, acute pulmonary edema, and acute ventricular dilatation.
It is important to note that pericardiocentesis is typically used as a temporary measure until a thoracotomy can be performed. Recent articles published on the RCEM learning platform suggest that pericardiocentesis has a low success rate and may delay thoracotomy, so it is advised against unless there are no other options available.
-
This question is part of the following fields:
- Trauma
-
-
Question 21
Correct
-
A 45-year-old woman was involved in a car accident where her car collided with a tree at a high speed. She was not wearing a seatbelt and was thrown forward onto the steering wheel of her car. She has bruising over her anterior chest wall and is experiencing chest pain. Her chest X-ray in the resuscitation room shows potential signs of a traumatic aortic injury, but it is uncertain.
Which investigation should be prioritized for further examination?Your Answer: Contrast-enhanced CT scan of the chest
Explanation:Traumatic aortic rupture, also known as traumatic aortic disruption or transection, occurs when the aorta is torn or ruptured due to physical trauma. This condition often leads to sudden death because of severe bleeding. Motor vehicle accidents and falls from great heights are the most common causes of this injury.
The patients with the highest chances of survival are those who have an incomplete tear near the ligamentum arteriosum of the proximal descending aorta, close to where the left subclavian artery branches off. The presence of an intact adventitial layer or contained mediastinal hematoma helps maintain continuity and prevents immediate bleeding and death. If promptly identified and treated, survivors of these injuries can recover. In cases where traumatic aortic rupture leads to sudden death, approximately 50% of patients have damage at the aortic isthmus, while around 15% have damage in either the ascending aorta or the aortic arch.
Initial chest X-rays may show signs consistent with a traumatic aortic injury. However, false-positive and false-negative results can occur, and sometimes there may be no abnormalities visible on the X-ray. Some of the possible X-ray findings include a widened mediastinum, hazy left lung field, obliteration of the aortic knob, fractures of the 1st and 2nd ribs, deviation of the trachea to the right, presence of a pleural cap, elevation and rightward shift of the right mainstem bronchus, depression of the left mainstem bronchus, obliteration of the space between the pulmonary artery and aorta, and deviation of the esophagus or NG tube to the right.
A helical contrast-enhanced CT scan of the chest is the preferred initial investigation for suspected blunt aortic injury. It has proven to be highly accurate, with close to 100% sensitivity and specificity. CT scanning should be performed liberally, as chest X-ray findings can be unreliable. However, hemodynamically unstable patients should not be placed in a CT scanner. If the CT results are inconclusive, aortography or trans-oesophageal echo can be performed for further evaluation.
Immediate surgical intervention is necessary for these injuries. Endovascular repair is the most common method used and has excellent short-term outcomes. Open repair may also be performed depending on the circumstances. It is important to control heart rate and blood pressure during stabilization to reduce the risk of rupture. Pain should be managed with appropriate analgesic
-
This question is part of the following fields:
- Trauma
-
-
Question 22
Incorrect
-
A 35-year-old man is brought into the emergency room by an ambulance with flashing lights. He has been involved in a building fire and has sustained severe burns. You evaluate his airway and have concerns about potential airway blockage. You decide to perform intubation on the patient and begin preparing the required equipment.
Which of the following is NOT a reason for performing early intubation in a burn patient?Your Answer:
Correct Answer: Superficial partial-thickness circumferential neck burns
Explanation:Early assessment of the airway is a critical aspect of managing a burned patient. Airway obstruction can occur rapidly due to direct injury or swelling from the burn. If there is a history of trauma, the airway should be evaluated while maintaining cervical spine control.
There are several risk factors for airway obstruction in burned patients, including inhalation injury, soot in the mouth or nostrils, singed nasal hairs, burns to the head, face, and neck, burns inside the mouth, large burn area and increasing burn depth, associated trauma, and a carboxyhemoglobin level above 10%.
In cases where significant swelling is anticipated, it may be necessary to urgently secure the airway with an uncut endotracheal tube before the swelling becomes severe. Delaying recognition of impending airway obstruction can make intubation difficult, and a surgical airway may be required.
The American Burn Life Support (ABLS) guidelines recommend early intubation in certain situations. These include signs of airway obstruction, extensive burns, deep facial burns, burns inside the mouth, significant swelling or risk of swelling, difficulty swallowing, respiratory compromise, decreased level of consciousness, and anticipated transfer of a patient with a large burn and airway issues without qualified personnel to intubate during transport.
Circumferential burns of the neck can cause tissue swelling around the airway, making early intubation necessary in these cases as well.
-
This question is part of the following fields:
- Trauma
-
-
Question 23
Incorrect
-
A 25-year-old woman is stabbed in the chest during a fight outside a bar. A FAST scan is conducted, revealing the presence of free fluid in the chest cavity.
Which of the following organs is most likely to be damaged in this scenario?Your Answer:
Correct Answer: Liver
Explanation:Stab wounds to the abdomen result in tissue damage through laceration and cutting. When patients experience penetrating abdominal trauma due to stab wounds, the organs that are most commonly affected include the liver (40% of cases), small bowel (30% of cases), diaphragm (20% of cases), and colon (15% of cases). These statistics are derived from the latest edition of the ATLS manual.
-
This question is part of the following fields:
- Trauma
-
-
Question 24
Incorrect
-
A 47 year old male visits the emergency department after injuring his knee. The patient explains that he extended his leg after tripping on a flight of stairs, but experienced intense pain around the knee when he landed on his foot. Walking has become challenging for the patient. The patient experiences tenderness above the patella and upon examination, the patella appears to be positioned lower than normal. An X-ray of the knee is requested. What is used to evaluate the accurate placement (height) of the patella on the X-ray?
Your Answer:
Correct Answer: Insall-Salvati ratio
Explanation:The Insall-Salvati ratio is determined by dividing the length of the patellar tendon (TL) by the length of the patella (PL). This ratio is used to compare the relative lengths of these two structures. A normal ratio is typically 1:1.
Further Reading:
A quadriceps tendon tear or rupture is a traumatic lower limb and joint injury that occurs when there is heavy loading on the leg, causing forced contraction of the quadriceps while the foot is planted and the knee is partially bent. These tears most commonly happen at the osteotendinous junction between the tendon and the superior pole of the patella. Quadriceps tendon ruptures are more common than patellar tendon ruptures.
When a quadriceps tendon tear occurs, the patient usually experiences a tearing sensation and immediate pain. They will then typically complain of pain around the knee and over the tendon. Clinically, there will often be a knee effusion and weakness or inability to actively extend the knee.
In cases of complete quadriceps tears, the patella will be displaced distally, resulting in a low lying patella or patella infera, also known as patella baja. Radiological measurements, such as the Insall-Salvati ratio, can be used to measure patella height. The Insall-Salvati ratio is calculated by dividing the patellar tendon length by the patellar length. A normal ratio is between 0.8 to 1.2, while a low lying patella (patella baja) is less than 0.8 and a high lying patella (patella alta) is greater than 1.2.
-
This question is part of the following fields:
- Trauma
-
-
Question 25
Incorrect
-
A 35-year-old man is brought into resus by blue light ambulance. He has been involved in a car accident and has suffered severe injuries. You assess his airway and are concerned about the potential for airway obstruction.
What is the primary risk factor for airway obstruction in a patient with severe injuries?Your Answer:
Correct Answer: A carboxyhaemoglobin level of 15%
Explanation:Early assessment of the airway is a critical aspect of managing a patient who has suffered burns. Airway blockage can occur rapidly due to direct injury, such as inhalation injury, or as a result of swelling caused by the burn. If there is a history of trauma, the airway should be evaluated and treated while maintaining control of the cervical spine.
Signs of airway obstruction may not be immediately apparent, as swelling typically does not occur right away. Children with thermal burns are at a higher risk of airway obstruction compared to adults due to their smaller airway size, so they require careful observation.
There are several risk factors for airway obstruction in burned patients, including inhalation injury, the presence of soot in the mouth or nostrils, singed nasal hairs, burns to the head, face, or neck, burns inside the mouth, a large burn area with increasing depth, and associated trauma. A carboxyhemoglobin level above 10% is also suggestive of an inhalation injury.
-
This question is part of the following fields:
- Trauma
-
-
Question 26
Incorrect
-
A man in his early forties who works at a steel mill is hit in the front of his abdomen by a steel girder. A FAST scan is conducted, revealing the existence of free fluid within the abdominal cavity.
Which organ is most likely to have sustained an injury in this scenario?Your Answer:
Correct Answer: Spleen
Explanation:Blunt abdominal trauma often leads to injuries in certain organs. According to the latest edition of the ATLS manual, the spleen is the most frequently injured organ, with a prevalence of 40-55%. Following closely behind is the liver, which sustains injuries in about 35-45% of cases. The small bowel, although less commonly affected, still experiences injuries in approximately 5-10% of patients. It is worth noting that patients who undergo laparotomy for blunt trauma have a 15% incidence of retroperitoneal hematoma. These statistics highlight the significant impact of blunt abdominal trauma on organ health.
-
This question is part of the following fields:
- Trauma
-
-
Question 27
Incorrect
-
You are requested to evaluate a 42-year-old individual with a knee injury sustained from leaping off a tall wall and landing on a leg that was completely extended. It is suspected that the patient may have experienced a quadriceps tendon rupture. Which of the subsequent observations would indicate this diagnosis?
Your Answer:
Correct Answer: Loss of of active knee extension
Explanation:When a complete quadriceps rupture occurs, it leads to the inability to actively extend the knee. Please refer to the following notes for more detailed information.
Further Reading:
A quadriceps tendon tear or rupture is a traumatic lower limb and joint injury that occurs when there is heavy loading on the leg, causing forced contraction of the quadriceps while the foot is planted and the knee is partially bent. These tears most commonly happen at the osteotendinous junction between the tendon and the superior pole of the patella. Quadriceps tendon ruptures are more common than patellar tendon ruptures.
When a quadriceps tendon tear occurs, the patient usually experiences a tearing sensation and immediate pain. They will then typically complain of pain around the knee and over the tendon. Clinically, there will often be a knee effusion and weakness or inability to actively extend the knee.
In cases of complete quadriceps tears, the patella will be displaced distally, resulting in a low lying patella or patella infera, also known as patella baja. Radiological measurements, such as the Insall-Salvati ratio, can be used to measure patella height. The Insall-Salvati ratio is calculated by dividing the patellar tendon length by the patellar length. A normal ratio is between 0.8 to 1.2, while a low lying patella (patella baja) is less than 0.8 and a high lying patella (patella alta) is greater than 1.2.
-
This question is part of the following fields:
- Trauma
-
-
Question 28
Incorrect
-
A 42-year-old woman is brought in by ambulance following a severe car accident. There was a prolonged extraction at the scene, and a complete trauma call is initiated. She is disoriented and slightly restless. Her vital signs are as follows: heart rate 125, blood pressure 83/45, oxygen saturation 98% on high-flow oxygen, respiratory rate 31, temperature 36.1°C. Her capillary refill time is 5 seconds, and her extremities appear pale and cool to the touch. Her cervical spine is immobilized with triple precautions. The airway is clear, and her chest examination is normal. Two large-bore cannulas have been inserted in her antecubital fossa, and a comprehensive set of blood tests, including a request for a cross-match, has been sent to the laboratory. She experiences significant tenderness in the suprapubic area upon abdominal palpation, and noticeable bruising is evident around her pelvis. A pelvic X-ray reveals a vertical shear type pelvic fracture.
Approximately how much blood has she lost?Your Answer:
Correct Answer: 1500-2000 mL
Explanation:This patient is currently experiencing moderate shock, classified as class III. This level of shock corresponds to a loss of 30-40% of their circulatory volume, which is equivalent to a blood loss of 1500-2000 mL.
Hemorrhage can be categorized into four different classes based on physiological parameters and clinical signs. These classes are classified as class I, class II, class III, and class IV.
In class I hemorrhage, the blood loss is up to 750 mL or up to 15% of the blood volume. The pulse rate is less than 100 beats per minute, and the systolic blood pressure is normal. The pulse pressure may be normal or increased, and the respiratory rate is within the range of 14-20 breaths per minute. The urine output is greater than 30 mL per hour, and the patient’s CNS/mental status is slightly anxious.
In class II hemorrhage, the blood loss ranges from 750-1500 mL or 15-30% of the blood volume. The pulse rate is between 100-120 beats per minute, and the systolic blood pressure remains normal. The pulse pressure is decreased, and the respiratory rate increases to 20-30 breaths per minute. The urine output decreases to 20-30 mL per hour, and the patient may experience mild anxiety.
The patient in this case is in class III hemorrhage, with a blood loss of 1500-2000 mL or 30-40% of the blood volume. The pulse rate is elevated, ranging from 120-140 beats per minute, and the systolic blood pressure is decreased. The pulse pressure is also decreased, and the respiratory rate is elevated to 30-40 breaths per minute. The urine output decreases significantly to 5-15 mL per hour, and the patient may experience anxiety and confusion.
Class IV hemorrhage represents the most severe level of blood loss, with a loss of over 40% of the blood volume. The pulse rate is greater than 140 beats per minute, and the systolic blood pressure is significantly decreased. The pulse pressure is decreased, and the respiratory rate is over 40 breaths per minute. The urine output becomes negligible, and the patient may become confused and lethargic.
-
This question is part of the following fields:
- Trauma
-
-
Question 29
Incorrect
-
You assess a patient with airway obstruction in the resuscitation area of the Emergency Department at your hospital.
Which of the following is the LEAST probable cause?Your Answer:
Correct Answer: GCS score of 9
Explanation:The airway is deemed at risk when the Glasgow Coma Scale (GCS) falls below 8. There are various factors that can lead to airway obstruction, including the presence of blood or vomit in the airway, a foreign object such as a tooth or food blocking the passage, direct injury to the face or throat, inflammation of the epiglottis (epiglottitis), involuntary closure of the larynx (laryngospasm), constriction of the bronchial tubes (bronchospasm), swelling in the pharynx due to infection or fluid accumulation (oedema), excessive bronchial secretions, and blockage of a tracheostomy tube.
-
This question is part of the following fields:
- Trauma
-
-
Question 30
Incorrect
-
A 35-year-old woman is involved in a car accident. Her observations are taken one hour after arriving at the Emergency Department. Her pulse rate is 88 bpm, BP is 130/50 mmHg, respiratory rate 16 breaths/minute, and her urine output over the past hour has been 40 ml. She has some bruising evident on her arm and is slightly nervous. The patient weighs approximately 65 kg.
How would you classify her haemorrhage according to the ATLS haemorrhagic shock classification?Your Answer:
Correct Answer: Class I
Explanation:This patient’s physiological parameters are mostly within normal range, but there is an increased pulse pressure and slight anxiety, suggesting a class I haemorrhage. It is crucial to be able to identify the degree of blood loss based on vital signs and mental status changes. The Advanced Trauma Life Support (ATLS) classification for haemorrhagic shock correlates the amount of blood loss with expected physiological responses in a healthy 70 kg individual. In a 70 kg male patient, the total circulating blood volume is approximately five litres, which accounts for about 7% of their total body weight.
The ATLS haemorrhagic shock classification is as follows:
CLASS I:
– Blood loss: Up to 750 mL
– Blood loss (% blood volume): Up to 15%
– Pulse rate: Less than 100 bpm
– Systolic BP: Normal
– Pulse pressure: Normal (or increased)
– Respiratory rate: 14-20 breaths per minute
– Urine output: Greater than 30 ml/hr
– CNS/mental status: Slightly anxiousCLASS II:
– Blood loss: 750-1500 mL
– Blood loss (% blood volume): 15-30%
– Pulse rate: 100-120 bpm
– Systolic BP: Normal
– Pulse pressure: Decreased
– Respiratory rate: 20-30 breaths per minute
– Urine output: 20-30 ml/hr
– CNS/mental status: Mildly anxiousCLASS III:
– Blood loss: 1500-2000 mL
– Blood loss (% blood volume): 30-40%
– Pulse rate: 120-140 bpm
– Systolic BP: Decreased
– Pulse pressure: Decreased
– Respiratory rate: 30-40 breaths per minute
– Urine output: 5-15 ml/hr
– CNS/mental status: Anxious, confusedCLASS IV:
– Blood loss: More than 2000 mL
– Blood loss (% blood volume): More than 40%
– Pulse rate: Greater than 140 bpm
– Systolic BP: Decreased
– Pulse pressure: Decreased
– Respiratory rate: More than 40 breaths per minute
– Urine output: Negligible
– CNS/mental status: Confused, lethargic -
This question is part of the following fields:
- Trauma
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)