-
Question 1
Correct
-
Which organ is in direct contact with the left kidney's anterior surface without being separated by peritoneum?
Your Answer: Pancreas
Explanation:Retroperitoneal Structures in Proximity to the Left Kidney
The retroperitoneal structures that are in direct contact with the anterior surface of the left kidney include the pancreas, adrenal gland, and colon. While the pancreas is the only structure commonly listed as retroperitoneal, it is important to note that the adrenal gland and colon also share this classification and are located in close proximity to the left kidney.
According to Gray’s Anatomy of the Human Body, which focuses on the urinary organs, the location and relationship of these structures is important for medical professionals. By knowing the retroperitoneal structures in proximity to the left kidney, doctors can better diagnose and treat conditions that may affect these organs.
In summary, while the pancreas is commonly listed as the only retroperitoneal structure in contact with the left kidney, it is important to also consider the adrenal gland and colon in this classification. the location and relationship of these structures is crucial for medical professionals in providing effective care for their patients.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 2
Correct
-
A 58-year-old male presents to the urgent care centre with complaints of back pain after spending the day replanting hedges. During the examination, he exhibits weakness in hip abduction and great toe dorsiflexion, foot drop, and some sensory loss on the dorsum of his foot. There is no apparent change in his reflexes.
What could be the probable reason behind these symptoms?Your Answer: L5 radiculopathy
Explanation:Understanding Prolapsed Disc and its Features
A prolapsed disc in the lumbar region can cause leg pain and neurological deficits. The pain is usually more severe in the leg than in the back and worsens when sitting. The features of the prolapsed disc depend on the site of compression. For instance, compression of the L3 nerve root can cause sensory loss over the anterior thigh, weak quadriceps, reduced knee reflex, and a positive femoral stretch test. On the other hand, compression of the L4 nerve root can cause sensory loss in the anterior aspect of the knee, weak quadriceps, reduced knee reflex, and a positive femoral stretch test.
Similarly, compression of the L5 nerve root can cause sensory loss in the dorsum of the foot, weakness in foot and big toe dorsiflexion, intact reflexes, and a positive sciatic nerve stretch test. Lastly, compression of the S1 nerve root can cause sensory loss in the posterolateral aspect of the leg and lateral aspect of the foot, weakness in plantar flexion of the foot, reduced ankle reflex, and a positive sciatic nerve stretch test.
The management of prolapsed disc is similar to that of other musculoskeletal lower back pain, which includes analgesia, physiotherapy, and exercises. However, if the symptoms persist even after 4-6 weeks, referral for an MRI is appropriate. Understanding the features of prolapsed disc can help in early diagnosis and prompt management.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 3
Correct
-
What is the position of the hyoid bone?
Your Answer: C3
Explanation:Surface Anatomy of the Neck: Identifying Structures and Corresponding Levels
The neck is a complex region of the body that contains numerous structures and landmarks. By understanding the surface anatomy of the neck, healthcare professionals can accurately identify and locate important structures during physical examinations and medical procedures.
In the midline of the neck, several structures can be felt from top to bottom. These include the hyoid at the level of C3, the notch of the thyroid cartilage at C4, and the cricoid cartilage at C6. The lower border of the cricoid cartilage is particularly significant as it corresponds to several important structures, including the junction of the larynx and trachea, the junction of the pharynx and esophagus, and the level at which the inferior thyroid artery enters the thyroid gland. Additionally, the vertebral artery enters the transverse foramen in the 6th cervical vertebrae at this level, and the superior belly of the omohyoid muscle crosses the carotid sheath. The middle cervical sympathetic ganglion is also located at this level, as well as the carotid tubercle, which can be used to compress the carotid artery.
Overall, understanding the surface anatomy of the neck is crucial for healthcare professionals to accurately identify and locate important structures during physical examinations and medical procedures.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 4
Incorrect
-
A 23-year-old male presents to the GP with complaints of frequent bruising. During the physical examination, an early-diastolic murmur is heard over the aortic region. The patient's skin is found to be highly elastic, and his joints exhibit greater extension than normal. Genetic testing is recommended, which confirms the suspected diagnosis of Ehlers-Danlos syndrome. Which collagen type is predominantly affected by this condition?
Your Answer: Collagen type 2
Correct Answer: Collagen type 3
Explanation:The main cause of Ehlers-Danlos syndrome is a genetic defect in collagen type III, although a less common variant also affects collagen type V. Osteogenesis imperfecta is primarily caused by a defect in collagen type I, while Goodpasture’s syndrome is associated with a defect in collagen type IV.
Ehler-Danlos syndrome is a genetic disorder that affects the connective tissue, specifically type III collagen. This causes the tissue to be more elastic than usual, resulting in increased skin elasticity and joint hypermobility. Common symptoms include fragile skin, easy bruising, and recurrent joint dislocation. Additionally, individuals with Ehler-Danlos syndrome may be at risk for serious complications such as aortic regurgitation, mitral valve prolapse, aortic dissection, subarachnoid hemorrhage, and angioid retinal streaks.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 5
Incorrect
-
A 30-year-old female arrives at the antenatal emergency unit with vaginal bleeding. After diagnosis, she is treated for a miscarriage using misoprostol.
Misoprostol is an agonist of the prostaglandin E2 (PGE2) receptor, which is a type of G-protein coupled receptor. Can you identify another receptor that is transduced in the same manner?Your Answer: Glucocorticoid receptor
Correct Answer: Adrenoceptors
Explanation:Adrenoceptors belong to the G-protein coupled receptor family, while the glucocorticoid and oestrogen receptors are steroid receptors, and the epidermal growth factor receptor is a receptor tyrosine kinase.
Adrenoceptors are a type of receptor found in the body that respond to the hormone adrenaline. There are four main types of adrenoceptors: alpha-1, alpha-2, beta-1, and beta-2. Each type of adrenoceptor is responsible for different physiological responses in the body.
Alpha-1 adrenoceptors are found in various tissues throughout the body and are responsible for vasoconstriction, relaxation of GI smooth muscle, salivary secretion, and hepatic glycogenolysis. On the other hand, alpha-2 adrenoceptors are mainly presynaptic and inhibit the release of neurotransmitters such as norepinephrine and acetylcholine from autonomic nerves. They also inhibit insulin and promote platelet aggregation.
Beta-1 adrenoceptors are mainly located in the heart and are responsible for increasing heart rate and force. Beta-2 adrenoceptors, on the other hand, are found in various tissues such as the lungs, blood vessels, and GI tract. They are responsible for vasodilation, bronchodilation, and relaxation of GI smooth muscle. Lastly, beta-3 adrenoceptors are found in adipose tissue and promote lipolysis.
All adrenoceptors are G-protein coupled, meaning they activate intracellular signaling pathways when activated by adrenaline. Alpha-1 adrenoceptors activate phospholipase C, which leads to the production of inositol triphosphate (IP3) and diacylglycerol (DAG). Alpha-2 adrenoceptors inhibit adenylate cyclase, while beta-1 and beta-2 adrenoceptors stimulate adenylate cyclase. Beta-3 adrenoceptors also stimulate adenylate cyclase.
In summary, adrenoceptors play a crucial role in regulating various physiological responses in the body. Understanding their functions and signaling pathways can help in the development of drugs that target these receptors for therapeutic purposes.
-
This question is part of the following fields:
- General Principles
-
-
Question 6
Incorrect
-
As a curious fourth-year medical student, you observe the birth of a full-term baby delivered vaginally to a mother who has given birth once before. The infant's Apgar score is 9 at 1 minute and 10 at 10 minutes, and the delivery is uncomplicated. However, a postnatal examination reveals that the ductus arteriosus has not closed properly. Can you explain the process by which this structure normally closes?
Your Answer: Decreased oxygen tension as the infant is no longer receiving oxygenated blood from the placenta
Correct Answer: Decreased prostaglandin concentration
Explanation:The ductus arteriosus, which is a shunt connecting the pulmonary artery with the descending aorta in utero, closes with the first breaths of life. This is due to an increase in pulmonary blood flow, which helps to clear local vasodilating prostaglandins that keep the duct open during fetal development. The opening of the lung alveoli with the first breath of life leads to an increase in oxygen tension in the blood, but this is not the primary mechanism behind the closure of the ductus arteriosus. It is important to note that oxygen tension in the blood increases after birth when the infant breathes in air and no longer receives mixed oxygenated blood via the placenta.
Understanding Patent Ductus Arteriosus
Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.
This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.
The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Correct
-
Which of the following is true about placebos?
Your Answer: The same compound has been found to have a more powerful placebo effect if it is branded than if it is unbranded
Explanation:Understanding the Placebo Effect
The placebo effect refers to the phenomenon where a patient experiences an improvement in their condition after receiving an inert substance or treatment that has no inherent pharmacological activity. This can include a sugar pill or a sham procedure that mimics a real medical intervention. The placebo effect is influenced by various factors, such as the perceived strength of the treatment, the status of the treating professional, and the patient’s expectations.
It is important to note that the placebo effect is not the same as receiving no care, as patients who maintain contact with medical services tend to have better outcomes. The placebo response is also greater in mild illnesses and can be difficult to separate from spontaneous remission. Patients who enter randomized controlled trials (RCTs) are often acutely unwell, and their symptoms may improve regardless of the intervention.
The placebo effect has been extensively studied in depression, where it tends to be abrupt and early in treatment, and less likely to persist compared to improvement from antidepressants. Placebo sag refers to a situation where the placebo effect is diminished with repeated use.
Overall, the placebo effect is a complex phenomenon that is influenced by various factors and can have significant implications for medical research and treatment. Understanding the placebo effect can help healthcare professionals provide better care and improve patient outcomes.
-
This question is part of the following fields:
- General Principles
-
-
Question 8
Correct
-
A 50-year-old woman visits the rheumatology clinic due to worsening joint pain caused by her longstanding rheumatoid arthritis. Her symptoms have progressed to the point where she can no longer perform her daily activities. She is interested in trying infliximab after hearing about it from a friend and reading about it online. She wants to know how the drug works and how it can potentially alleviate her symptoms.
What is the mechanism of action of infliximab?Your Answer: Anti-TNF
Explanation:Infliximab targets TNF through its monoclonal antibody action, while rituximab targets CD20, cetuximab acts as an antagonist to epidermal growth factor receptor, alemtuzumab targets CD52, and OKT3 targets CD3.
Understanding Tumour Necrosis Factor and its Inhibitors
Tumour necrosis factor (TNF) is a cytokine that plays a crucial role in the immune system. It is mainly secreted by macrophages and has various effects on the immune system, such as activating macrophages and neutrophils, acting as a costimulator for T cell activation, and mediating the body’s response to Gram-negative septicaemia. TNF also has anti-tumour effects and binds to both the p55 and p75 receptor, inducing apoptosis and activating NFkB.
TNF has endothelial effects, including increased expression of selectins and production of platelet activating factor, IL-1, and prostaglandins. It also promotes the proliferation of fibroblasts and their production of protease and collagenase. TNF inhibitors are used to treat inflammatory conditions such as rheumatoid arthritis and Crohn’s disease. Examples of TNF inhibitors include infliximab, etanercept, adalimumab, and golimumab.
Infliximab is also used to treat active Crohn’s disease unresponsive to steroids. However, TNF blockers can have adverse effects such as reactivation of latent tuberculosis and demyelination. Understanding TNF and its inhibitors is crucial in the treatment of various inflammatory conditions.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 9
Correct
-
A 61-year-old woman comes to the Emergency Department with slurred speech and left-sided facial drooping. You perform a cranial nerves examination and find that her vagus nerve has been impacted. What sign would you anticipate observing in this patient?
Your Answer: Uvula deviated to the left
Explanation:The uvula is deviated to the left, indicating a right-sided stroke affecting the vagus nerve (CN X). This can cause a loss of gag reflex and uvula deviation away from the site of the lesion. Loss of taste (anterior 2/3) is a symptom of facial nerve (CN VII) lesions, while tongue deviation to the right is a symptom of hypoglossal nerve (CN XII) lesions. Vertigo is a symptom of vestibulocochlear nerve (CN VIII) lesions.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 10
Incorrect
-
A 25-year-old man is intoxicated and falls, resulting in a transected median nerve by a shard of glass at the proximal border of the flexor retinaculum. Fortunately, his tendons remain unharmed. Which of the following features is unlikely to be present?
Your Answer: Loss of power of opponens pollicis
Correct Answer: Loss of sensation on the dorsal aspect of the thenar eminence
Explanation:If the median nerve is damaged before reaching the flexor retinaculum, it can lead to the loss of certain muscles, including the abductor pollicis brevis, flexor pollicis brevis, opponens pollicis, and the first and second lumbricals. When the patient is asked to slowly close their hand, there may be a delay in the movement of the index and middle fingers due to the impaired lumbrical muscle function. However, there are only minor sensory changes and no impact on the dorsal aspect of the thenar eminence. The abductor pollicis longus muscle, which is innervated by the posterior interosseous nerve, will still contribute to thumb abduction, but it may be weaker than before the injury.
Anatomy and Function of the Median Nerve
The median nerve is a nerve that originates from the lateral and medial cords of the brachial plexus. It descends lateral to the brachial artery and passes deep to the bicipital aponeurosis and the median cubital vein at the elbow. The nerve then passes between the two heads of the pronator teres muscle and runs on the deep surface of flexor digitorum superficialis. Near the wrist, it becomes superficial between the tendons of flexor digitorum superficialis and flexor carpi radialis, passing deep to the flexor retinaculum to enter the palm.
The median nerve has several branches that supply the upper arm, forearm, and hand. These branches include the pronator teres, flexor carpi radialis, palmaris longus, flexor digitorum superficialis, flexor pollicis longus, and palmar cutaneous branch. The nerve also provides motor supply to the lateral two lumbricals, opponens pollicis, abductor pollicis brevis, and flexor pollicis brevis muscles, as well as sensory supply to the palmar aspect of the lateral 2 ½ fingers.
Damage to the median nerve can occur at the wrist or elbow, resulting in various symptoms such as paralysis and wasting of thenar eminence muscles, weakness of wrist flexion, and sensory loss to the palmar aspect of the fingers. Additionally, damage to the anterior interosseous nerve, a branch of the median nerve, can result in loss of pronation of the forearm and weakness of long flexors of the thumb and index finger. Understanding the anatomy and function of the median nerve is important in diagnosing and treating conditions that affect this nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 11
Incorrect
-
A 29-year-old male is injured by a gunshot to his right chest resulting in a right haemothorax that requires a thoracotomy. During the procedure, the surgeons opt to use a vascular clamp to secure the hilum of the right lung. What structure will be positioned most anteriorly at this location?
Your Answer: Pulmonary vein
Correct Answer: Phrenic nerve
Explanation:At the base of the right lung, the phrenic nerve is located in the anterior position.
Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 12
Incorrect
-
A clinical trial was conducted to investigate the effectiveness of a new drug in preventing hip fractures in women over the age of 60. One group of 1,000 women received the new drug while another group of 1,400 women received a placebo. The incidence of hip fractures in the drug group was 2% compared to 4% in the placebo group. What is the number needed to treat to prevent one hip fracture?
Your Answer: 2
Correct Answer: 50
Explanation:Numbers needed to treat (NNT) is a measure that determines how many patients need to receive a particular intervention to reduce the expected number of outcomes by one. To calculate NNT, you divide 1 by the absolute risk reduction (ARR) and round up to the nearest whole number. ARR can be calculated by finding the absolute difference between the control event rate (CER) and the experimental event rate (EER). There are two ways to calculate ARR, depending on whether the outcome of the study is desirable or undesirable. If the outcome is undesirable, then ARR equals CER minus EER. If the outcome is desirable, then ARR is equal to EER minus CER. It is important to note that ARR may also be referred to as absolute benefit increase.
-
This question is part of the following fields:
- General Principles
-
-
Question 13
Incorrect
-
A 65-year-old woman experiences chest discomfort during physical activity and is diagnosed with angina.
What alterations are expected to be observed in her arteries?Your Answer: The formation of foam cells from endothelial cells
Correct Answer: Smooth muscle proliferation and migration from the tunica media to the intima
Explanation:The final stage in the development of an atheroma involves the proliferation and migration of smooth muscle from the tunica media into the intima. While monocytes do migrate, they differentiate into macrophages which then phagocytose LDLs and form foam cells. Additionally, there is infiltration of LDLs. The formation of fibrous capsules is a result of the smooth muscle proliferation and migration. Atherosclerosis is also associated with a reduction in nitric oxide availability.
Understanding Atherosclerosis and its Complications
Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.
Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Incorrect
-
A 12-year-old boy comes to the GP after experiencing unusual behavior. His mother accompanies him and reports that her son suddenly started smacking his lips together for a brief period. She adds that he then complained of smelling a foul odor that she couldn't detect. Given the family history of epilepsy, you suspect that he may have had a seizure. What type of seizure is typically associated with these symptoms?
Your Answer: Parietal lobe seizure
Correct Answer: Temporal lobe seizure
Explanation:Temporal lobe seizures can lead to hallucinations, including olfactory hallucinations, which is likely the cause of this patient’s presentation.
Flashes and floaters are a common symptom of occipital lobe seizures.
Juvenile myoclonic epilepsy can cause occasional generalized seizures and daytime absences.
Parietal lobe seizures can result in paraesthesia.
Localising Features of Focal Seizures in Epilepsy
Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.
On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.
-
This question is part of the following fields:
- Neurological System
-
-
Question 15
Correct
-
An 80-year-old man with symptoms of intermittent claudication needs to have his ankle brachial pressure indices checked. However, the dorsalis pedis artery cannot be felt. What tendinous structure, located medially, could aid in its identification?
Your Answer: Extensor hallucis longus tendon
Explanation:The dorsalis pedis artery is located lateral to the extensor hallucis longus tendon.
The foot has two arches: the longitudinal arch and the transverse arch. The longitudinal arch is higher on the medial side and is supported by the posterior pillar of the calcaneum and the anterior pillar composed of the navicular bone, three cuneiforms, and the medial three metatarsal bones. The transverse arch is located on the anterior part of the tarsus and the posterior part of the metatarsus. The foot has several intertarsal joints, including the sub talar joint, talocalcaneonavicular joint, calcaneocuboid joint, transverse tarsal joint, cuneonavicular joint, intercuneiform joints, and cuneocuboid joint. The foot also has various ligaments, including those of the ankle joint and foot. The foot is innervated by the lateral plantar nerve and medial plantar nerve, and it receives blood supply from the plantar arteries and dorsalis pedis artery. The foot has several muscles, including the abductor hallucis, flexor digitorum brevis, abductor digit minimi, flexor hallucis brevis, adductor hallucis, and extensor digitorum brevis.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 16
Correct
-
Which one of the following is not a characteristic of typical cerebrospinal fluid?
Your Answer: It may normally contain up to 5 red blood cells per mm3.
Explanation:It must not include red blood cells.
Cerebrospinal Fluid: Circulation and Composition
Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.
The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.
The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 17
Correct
-
An 83-year-old man visits his GP complaining of weight loss and a change in bowel habit that has been ongoing for the past 6 months. Following a colonoscopy and biopsy, he is diagnosed with a malignancy of the transverse colon. The transverse colon is connected to the posterior abdominal wall by a double fold of the peritoneum. Which other organ is also attached to similar double folds of the peritoneum?
Your Answer: The stomach
Explanation:The mesentery is present in the stomach and the first part of the duodenum as they are intraperitoneal structures.
In the abdomen, organs are categorized as either intraperitoneal or retroperitoneal. The intraperitoneal organs include the stomach, spleen, liver, bulb of the duodenum, jejunum, ileum, transverse colon, and sigmoid colon. The retroperitoneal organs include the remaining part of the duodenum, the cecum and ascending colon, the descending colon, the pancreas, and the kidneys.
The peritoneum has different functions in the abdomen and can be classified accordingly. It is called a mesentery when it anchors organs to the posterior abdominal wall and a ligament when it connects two different organs. The lesser and greater curvatures of the stomach have folds known as the lesser and greater omenta.
The retroperitoneal structures are those that are located behind the peritoneum, which is the membrane that lines the abdominal cavity. These structures include the duodenum (2nd, 3rd, and 4th parts), ascending and descending colon, kidneys, ureters, aorta, and inferior vena cava. They are situated in the back of the abdominal cavity, close to the spine. In contrast, intraperitoneal structures are those that are located within the peritoneal cavity, such as the stomach, duodenum (1st part), jejunum, ileum, transverse colon, and sigmoid colon. It is important to note that the retroperitoneal structures are not well demonstrated in the diagram as the posterior aspect has been removed, but they are still significant in terms of their location and function.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 18
Incorrect
-
A 75-year-old female patient presents to the Emergency Department after experiencing a fall. She has a medical history of hypertension and type 2 diabetes, and is a smoker with a BMI of 34 kg/m². Her family history includes high cholesterol in her father and older sister, who both passed away due to a heart attack.
The patient denies any head trauma from the fall and has a regular pulse of 78 bpm. Upon conducting a full neurological examination, it is discovered that her left arm and left leg have a power of 3/5. Additionally, her smile is asymmetrical and droops on the left side.
What is the most probable underlying cause of her symptoms?Your Answer: Intracerebral haemorrhage
Correct Answer: Emboli caused by atherosclerosis
Explanation:Intracerebral haemorrhage is not the most probable cause of all strokes. Hence, it is crucial to conduct a CT head scan to eliminate the possibility of haemorrhagic stroke before initiating treatment.
A transient ischaemic attack (TIA) is a brief period of neurological deficit caused by a vascular issue, lasting less than an hour. The original definition of a TIA was based on time, but it is now recognized that even short periods of ischaemia can result in pathological changes to the brain. Therefore, a new ’tissue-based’ definition is now used. The clinical features of a TIA are similar to those of a stroke, but the symptoms resolve within an hour. Possible features include unilateral weakness or sensory loss, aphasia or dysarthria, ataxia, vertigo, or loss of balance, visual problems, sudden transient loss of vision in one eye (amaurosis fugax), diplopia, and homonymous hemianopia.
NICE recommends immediate antithrombotic therapy, giving aspirin 300 mg immediately unless the patient has a bleeding disorder or is taking an anticoagulant. If aspirin is contraindicated, management should be discussed urgently with the specialist team. Specialist review is necessary if the patient has had more than one TIA or has a suspected cardioembolic source or severe carotid stenosis. Urgent assessment within 24 hours by a specialist stroke physician is required if the patient has had a suspected TIA in the last 7 days. Referral for specialist assessment should be made as soon as possible within 7 days if the patient has had a suspected TIA more than a week previously. The person should be advised not to drive until they have been seen by a specialist.
Neuroimaging should be done on the same day as specialist assessment if possible. MRI is preferred to determine the territory of ischaemia or to detect haemorrhage or alternative pathologies. Carotid imaging is necessary as atherosclerosis in the carotid artery may be a source of emboli in some patients. All patients should have an urgent carotid doppler unless they are not a candidate for carotid endarterectomy.
Antithrombotic therapy is recommended, with clopidogrel being the first-line treatment. Aspirin + dipyridamole should be given to patients who cannot tolerate clopidogrel. Carotid artery endarterectomy should only be considered if the patient has suffered a stroke or TIA in the carotid territory and is not severely disabled. It should only be recommended if carotid stenosis is greater
-
This question is part of the following fields:
- Neurological System
-
-
Question 19
Incorrect
-
A 36-year-old woman is scheduled for a parathyroidectomy to treat her hyperparathyroidism. During the surgery, an enlarged inferior parathyroid gland is identified with a vessel located adjacent to it laterally. Which vessel is most likely to be in this location?
Your Answer: External carotid artery
Correct Answer: Common carotid artery
Explanation:The inferior parathyroid is located laterally to the common carotid artery.
Anatomy and Development of the Parathyroid Glands
The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.
The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Incorrect
-
A 32-year-old pregnant woman attends her 20-week anomaly scan. She has had two previous pregnancies resulting in two sons. The pregnancy has been uneventful so far. During the scan, the sonographer observes that the foetus is below the 10th percentile for size, indicating that it is small for gestational age.
What potential risk factors could have played a role in this outcome?Your Answer: Previous pregnancy
Correct Answer: Smoking
Explanation:Smoking while pregnant is associated with a higher likelihood of having a baby that is small for gestational age. The increased risk is thought to be due to exposure to nicotine and carbon monoxide. Diabetes mellitus, previous pregnancy, and maternal obesity are not linked to small for gestational age babies, but rather to large for gestational age babies.
Small for Gestational Age (SGA) is a statistical definition used to describe babies who are smaller than expected for their gestational age. Although there is no universally agreed percentile, the 10th percentile is often used, meaning that 10% of normal babies will be below this threshold. SGA can be determined either antenatally or postnatally. There are two types of SGA: symmetrical and asymmetrical. Symmetrical SGA occurs when the fetal head circumference and abdominal circumference are equally small, while asymmetrical SGA occurs when the abdominal circumference slows relative to the increase in head circumference.
There are various causes of SGA, including incorrect dating, constitutionally small (normal) babies, and abnormal fetuses. Symmetrical SGA is more common and can be caused by idiopathic factors, race, sex, placental insufficiency, pre-eclampsia, chromosomal and congenital abnormalities, toxins such as smoking and heroin, and infections such as CMV, parvovirus, rubella, syphilis, and toxoplasmosis. Asymmetrical SGA is less common and can be caused by toxins such as alcohol, cigarettes, and heroin, chromosomal and congenital abnormalities, and infections.
The management of SGA depends on the type and cause. For symmetrical SGA, most cases represent the lower limits of the normal range and require fortnightly ultrasound growth assessments to demonstrate normal growth rates. Pathological causes should be ruled out by checking maternal blood for infections and searching the fetus carefully with ultrasound for markers of chromosomal abnormality. Asymmetrical SGA also requires fortnightly ultrasound growth assessments, as well as biophysical profiles and Doppler waveforms from umbilical circulation to look for absent end-diastolic flow. If results are sub-optimal, delivery may be considered.
-
This question is part of the following fields:
- Reproductive System
-
-
Question 21
Incorrect
-
Which one of the following defines the standard error of the median?
Your Answer: Standard deviation / square root (mean)
Correct Answer: Standard deviation / square root (number of patients)
Explanation:Understanding Confidence Interval and Standard Error of the Mean
The confidence interval is a widely used concept in medical statistics, but it can be confusing to understand. In simple terms, it is a range of values that is likely to contain the true effect of an intervention. The likelihood of the true effect lying within the confidence interval is determined by the confidence level, which is the specified probability of including the true value of the variable. For instance, a 95% confidence interval means that the range of values should contain the true effect of intervention 95% of the time.
To calculate the confidence interval, we use the standard error of the mean (SEM), which measures the spread expected for the mean of the observations. The SEM is calculated by dividing the standard deviation (SD) by the square root of the sample size (n). As the sample size increases, the SEM gets smaller, indicating a more accurate sample mean from the true population mean.
A 95% confidence interval is calculated by subtracting and adding 1.96 times the SEM from the mean value. However, if the sample size is small (n < 100), a 'Student's T critical value' look-up table should be used instead of 1.96. Similarly, if a different confidence level is required, such as 90%, the value used in the formula should be adjusted accordingly. In summary, the confidence interval is a range of values that is likely to contain the true effect of an intervention, and its calculation involves using the standard error of the mean. Understanding these concepts is crucial in interpreting statistical results in medical research.
-
This question is part of the following fields:
- General Principles
-
-
Question 22
Incorrect
-
A 55-year-old woman presents to the emergency department complaining of vomiting and a severe headache that developed after experiencing blurred vision. The physician prescribes an antiemetic. Which of the following antiemetics aids in gastric emptying?
Your Answer: Prochlorperazine
Correct Answer: Metoclopramide
Explanation:The effectiveness of antiemetics depends on their ability to interact with different receptors to varying degrees. Therefore, the selection of an antiemetic will be based on the patient’s condition and the underlying cause of their nausea.
Metoclopramide functions as a dopamine antagonist, but it also has an agonistic impact on peripheral 5HT3 receptors and an antagonistic effect on muscarinic receptors, which helps to facilitate gastric emptying.
Understanding the Mechanism and Uses of Metoclopramide
Metoclopramide is a medication primarily used to manage nausea, but it also has other uses such as treating gastro-oesophageal reflux disease and gastroparesis secondary to diabetic neuropathy. It is often combined with analgesics for the treatment of migraines. However, it is important to note that metoclopramide has adverse effects such as extrapyramidal effects, acute dystonia, diarrhoea, hyperprolactinaemia, tardive dyskinesia, and parkinsonism. It should also be avoided in bowel obstruction but may be helpful in paralytic ileus.
The mechanism of action of metoclopramide is quite complicated. It is primarily a D2 receptor antagonist, but it also has mixed 5-HT3 receptor antagonist/5-HT4 receptor agonist activity. Its antiemetic action is due to its antagonist activity at D2 receptors in the chemoreceptor trigger zone, and at higher doses, the 5-HT3 receptor antagonist also has an effect. The gastroprokinetic activity is mediated by D2 receptor antagonist activity and 5-HT4 receptor agonist activity.
In summary, metoclopramide is a medication with multiple uses, but it also has adverse effects that should be considered. Its mechanism of action is complex, involving both D2 receptor antagonist and 5-HT3 receptor antagonist/5-HT4 receptor agonist activity. Understanding the uses and mechanism of action of metoclopramide is important for its safe and effective use.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 23
Incorrect
-
A 65-year-old woman with hypocalcaemia has elevated parathyroid hormone levels. Is it a typical physiological response to increase calcium levels? In the kidney, where does parathyroid hormone act to enhance calcium reabsorption?
Your Answer: Bowman's capsule
Correct Answer: Distal convoluted tubule
Explanation:Understanding Parathyroid Hormone and Its Effects
Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.
The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.
Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 24
Correct
-
A fourth year medical student presents to their GP with haemoptysis following a recent mild flu-like illness. Upon urinalysis, microscopic haematuria is detected. The GP suspects Goodpasture's syndrome and refers the student to the acute medical unit at the nearby hospital. What type of hypersensitivity reaction is Goodpasture's syndrome an example of?
Your Answer: Type 2
Explanation:The Gell and Coombs classification of hypersensitivity reactions categorizes reactions into four types. Type 2 reactions involve the binding of IgG and IgM to a cell, resulting in cell death. Examples of type 2 reactions include Goodpasture syndrome, haemolytic disease of the newborn, and rheumatic fever.
Allergic rhinitis is an instance of a type 1 (immediate) reaction, which is IgE mediated. It is a hypersensitivity to a previously harmless substance.
Type 3 reactions are mediated by immune complexes, with rheumatoid arthritis being an example of a type 3 hypersensitivity reaction.
Type 4 (delayed) reactions are mediated by T lymphocytes and cause contact dermatitis.
Anti-glomerular basement membrane (GBM) disease, previously known as Goodpasture’s syndrome, is a rare form of small-vessel vasculitis that is characterized by both pulmonary haemorrhage and rapidly progressive glomerulonephritis. This condition is caused by anti-GBM antibodies against type IV collagen and is more common in men, with a bimodal age distribution. Goodpasture’s syndrome is associated with HLA DR2.
The features of this disease include pulmonary haemorrhage and rapidly progressive glomerulonephritis, which can lead to acute kidney injury. Nephritis can result in proteinuria and haematuria. Renal biopsy typically shows linear IgG deposits along the basement membrane, while transfer factor is raised secondary to pulmonary haemorrhages.
Management of anti-GBM disease involves plasma exchange (plasmapheresis), steroids, and cyclophosphamide. One of the main complications of this condition is pulmonary haemorrhage, which can be exacerbated by factors such as smoking, lower respiratory tract infection, pulmonary oedema, inhalation of hydrocarbons, and young males.
-
This question is part of the following fields:
- Renal System
-
-
Question 25
Incorrect
-
An 89-year-old woman arrives at the ER after a fall resulting in a neck of femur fracture. A total hip replacement is carried out, and vitamin D is prescribed for her bone health. What impact would this have on the ions in her bloodstream?
Your Answer: Increased plasma phosphate
Correct Answer: Increased plasma calcium and phosphate
Explanation:Plasma calcium and phosphate levels are regulated by various hormones, including parathyroid hormone, vitamin D, and calcitonin. Parathyroid hormone increases plasma calcium but decreases plasma phosphate, while vitamin D increases both plasma calcium and phosphate. On the other hand, calcitonin decreases plasma calcium levels. Understanding these hormonal interactions is important in identifying potential causes of calcium metabolism disorders. For instance, hyperkalemia may result from Addison’s disease, an autoimmune disorder that leads to hypoaldosteronism due to the production of autoantibodies against the adrenal gland.
Understanding Vitamin D
Vitamin D is a type of vitamin that is soluble in fat and is essential for the metabolism of calcium and phosphate in the body. It is converted into calcifediol in the liver and then into calcitriol, which is the active form of vitamin D, in the kidneys. Vitamin D can be obtained from two sources: vitamin D2, which is found in plants, and vitamin D3, which is present in dairy products and can also be synthesized by the skin when exposed to sunlight.
The primary function of vitamin D is to increase the levels of calcium and phosphate in the blood. It achieves this by increasing the absorption of calcium in the gut and the reabsorption of calcium in the kidneys. Vitamin D also stimulates osteoclastic activity, which is essential for bone growth and remodeling. Additionally, it increases the reabsorption of phosphate in the kidneys.
A deficiency in vitamin D can lead to two conditions: rickets in children and osteomalacia in adults. Rickets is characterized by soft and weak bones, while osteomalacia is a condition where the bones become weak and brittle. Therefore, it is crucial to ensure that the body receives an adequate amount of vitamin D to maintain healthy bones and overall health.
-
This question is part of the following fields:
- General Principles
-
-
Question 26
Correct
-
A 16-year-old girl visits the clinic with concerns about a possible pregnancy. She is provided with a pregnancy test, which indicates a positive result. From which part of her body would the beta-hCG, detected on the pregnancy test, have been secreted?
Your Answer: The placenta
Explanation:During pregnancy, the placenta produces beta-hCG, which helps to sustain the corpus luteum. This, in turn, continues to secrete progesterone and estrogen throughout the pregnancy to maintain the endometrial lining. Eventually, after 6 weeks of gestation, the placenta takes over the production of progesterone.
Endocrine Changes During Pregnancy
During pregnancy, there are several physiological changes that occur in the body, including endocrine changes. Progesterone, which is produced by the fallopian tubes during the first two weeks of pregnancy, stimulates the secretion of nutrients required by the zygote/blastocyst. At six weeks, the placenta takes over the production of progesterone, which inhibits uterine contractions by decreasing sensitivity to oxytocin and inhibiting the production of prostaglandins. Progesterone also stimulates the development of lobules and alveoli.
Oestrogen, specifically oestriol, is another major hormone produced during pregnancy. It stimulates the growth of the myometrium and the ductal system of the breasts. Prolactin, which increases during pregnancy, initiates and maintains milk secretion of the mammary gland. It is essential for the expression of the mammotropic effects of oestrogen and progesterone. However, oestrogen and progesterone directly antagonize the stimulating effects of prolactin on milk synthesis.
Human chorionic gonadotropin (hCG) is secreted by the syncitiotrophoblast and can be detected within nine days of pregnancy. It mimics LH, rescuing the corpus luteum from degenerating and ensuring early oestrogen and progesterone secretion. It also stimulates the production of relaxin and may inhibit contractions induced by oxytocin. Other hormones produced during pregnancy include relaxin, which suppresses myometrial contractions and relaxes the pelvic ligaments and pubic symphysis, and human placental lactogen (hPL), which has lactogenic actions and enhances protein metabolism while antagonizing insulin.
-
This question is part of the following fields:
- Reproductive System
-
-
Question 27
Incorrect
-
In the Vaughan Williams classification of antihypertensives, lisinopril is an example of a:
Your Answer: Class Ib agent
Correct Answer: Class IV agent
Explanation:The Vaughan Williams Classification of Antiarrhythmics
The Vaughan Williams classification is a widely used system for categorizing antiarrhythmic drugs based on their mechanism of action. The classification system is divided into four classes, each with a different mechanism of action. Class I drugs block sodium channels, Class II drugs are beta-adrenoceptor antagonists, Class III drugs block potassium channels, and Class IV drugs are calcium channel blockers.
Class Ia drugs, such as quinidine and procainamide, increase the duration of the action potential by blocking sodium channels. However, quinidine toxicity can cause cinchonism, which is characterized by symptoms such as headache, tinnitus, and thrombocytopenia. Procainamide may also cause drug-induced lupus.
Class Ib drugs, such as lidocaine and mexiletine, decrease the duration of the action potential by blocking sodium channels. Class Ic drugs, such as flecainide and propafenone, have no effect on the duration of the action potential but still block sodium channels.
Class II drugs, such as propranolol and metoprolol, are beta-adrenoceptor antagonists that decrease the heart rate and contractility of the heart.
Class III drugs, such as amiodarone and sotalol, block potassium channels, which prolongs the duration of the action potential.
Class IV drugs, such as verapamil and diltiazem, are calcium channel blockers that decrease the influx of calcium ions into the heart, which slows down the heart rate and reduces contractility.
It should be noted that some common antiarrhythmic drugs, such as adenosine, atropine, digoxin, and magnesium, are not included in the Vaughan Williams classification.
-
This question is part of the following fields:
- General Principles
-
-
Question 28
Incorrect
-
How can cardiac output be defined?
Your Answer: The amount of blood ejected from the heart in one beat
Correct Answer: The amount of blood ejected from the heart in one minute
Explanation:Cardiac Output
Cardiac output refers to the amount of blood that is pumped out of the heart by either ventricle, typically the left ventricle, in one minute. This is calculated by multiplying the stroke volume, which is the amount of blood ejected from the left ventricle in one contraction, by the heart rate, which is the frequency of the cardiac cycle. At rest, the typical adult has a cardiac output of approximately 5 liters per minute. However, during extreme exercise, the cardiac output can increase up to 6 times due to the increased heart rate and need for more blood circulation throughout the body.
The heart rate is the speed at which the heart beats per minute, while the stroke volume is the amount of blood ejected from the heart in one beat or contraction. The total peripheral resistance is the force that the ventricles must work against to pump an adequate volume of blood around the body. cardiac output is important in diagnosing and treating various cardiovascular conditions.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 29
Correct
-
A 45-year-old woman is scheduled to have an axillary lymph node dissection as a component of her breast cancer treatment. During the surgical approach to the axilla, which fascial layer will be cut?
Your Answer: Clavipectoral fascia
Explanation:The clavipectoral fascia is located beneath the clavicular part of the pectoralis major muscle and serves as a protective barrier for the axillary vessels and nodes. In cases of breast cancer requiring axillary node clearance, the clavipectoral fascia is incised to allow access to the nodal stations. These stations include level 1 nodes located below the pectoralis minor muscle, level 2 nodes situated behind it, and level 3 nodes above it. In some cases, such as during a Patey Mastectomy, surgeons may need to divide the pectoralis minor muscle to access level 3 nodes. However, with the use of sentinel node biopsy and improved techniques, this procedure is becoming less common.
Anatomy of the Axilla
The axilla, also known as the armpit, is a region of the body that contains important structures such as nerves, veins, and lymph nodes. It is bounded medially by the chest wall and serratus anterior, laterally by the humeral head, and anteriorly by the lateral border of the pectoralis major. The floor of the axilla is formed by the subscapularis muscle, while the clavipectoral fascia forms its fascial boundary.
One of the important nerves that passes through the axilla is the long thoracic nerve, which supplies the serratus anterior muscle. The thoracodorsal nerve and trunk, on the other hand, innervate and vascularize the latissimus dorsi muscle. The axillary vein, which is the continuation of the basilic vein, lies at the apex of the axilla and becomes the subclavian vein at the outer border of the first rib. The intercostobrachial nerves, which provide cutaneous sensation to the axillary skin, traverse the axillary lymph nodes and are often divided during axillary surgery.
The axilla is also an important site of lymphatic drainage for the breast. Therefore, any pathology or surgery involving the breast can affect the lymphatic drainage of the axilla and lead to lymphedema. Understanding the anatomy of the axilla is crucial for healthcare professionals who perform procedures in this region, as damage to any of the structures can lead to significant complications.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 30
Incorrect
-
John is a 35-year-old man who was discharged 3 days ago from hospital, after sustaining an injury to his head. Observations and imaging were all normal and there was no neurological deficit on examination. Since then he has noticed difficulty in going upstairs. He says that he can't see where he is going and becomes very unsteady. His wife also told him that he has started to tilt his head to the right, which he was unaware of.
On examination, his visual acuity is 6/6 but he has difficulty looking up and out with his right eye, no other abnormality is revealed.
What is the most likely diagnosis?Your Answer: Oculomotor nerve palsy
Correct Answer: Trochlear nerve palsy
Explanation:Consider 4th nerve palsy if your vision deteriorates while descending stairs.
Understanding Fourth Nerve Palsy
Fourth nerve palsy is a condition that affects the superior oblique muscle, which is responsible for depressing the eye and moving it inward. One of the main features of this condition is vertical diplopia, which is double vision that occurs when looking straight ahead. This is often noticed when reading a book or going downstairs. Another symptom is subjective tilting of objects, also known as torsional diplopia. Patients may also develop a head tilt, which they may or may not be aware of. When looking straight ahead, the affected eye appears to deviate upwards and is rotated outwards. Understanding the symptoms of fourth nerve palsy can help individuals seek appropriate treatment and management for this condition.
-
This question is part of the following fields:
- Neurological System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)