00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A 38-year-old man has been admitted to the ICU through the ED with...

    Incorrect

    • A 38-year-old man has been admitted to the ICU through the ED with reduced consciousness and cyanosis. Despite an oxygen saturation of 94% in the ED, both peripheral and central cyanosis were present. Arterial blood gas monitoring revealed significant hypoxia, but no evidence of methaemoglobin. The suspected diagnosis is carbon monoxide poisoning, and the patient is intubated and ventilated to prevent further leftward shift of the oxygen dissociation curve. What factors can cause this shift in the oxygen dissociation curve?

      Your Answer: Acidosis

      Correct Answer: Hypocapnia

      Explanation:

      The oxygen dissociation curve can be shifted to the left by low pCO2, which increases haemoglobin’s affinity for oxygen and makes it less likely to release oxygen to the tissues. In contrast, acidosis, hypercapnia, and hyperthermia cause a right shift of the curve, making it easier for oxygen to be released to the tissues. Raised levels of 2,3-diphosphoglycerate also shift the curve to the right by inhibiting oxygen binding to haemoglobin.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      199.3
      Seconds
  • Question 2 - A 50-year-old woman presents to your GP clinic with a complaint of a...

    Correct

    • A 50-year-old woman presents to your GP clinic with a complaint of a malodorous discharge from her left ear for the last 2 weeks. She also reports experiencing some hearing loss in her left ear and suspects it may be due to earwax. However, upon examination, there is no earwax present but instead a crust on the lower portion of the tympanic membrane. What is the probable diagnosis?

      Your Answer: Cholesteatoma

      Explanation:

      When a patient presents with unilateral foul smelling discharge and deafness, it is important to consider the possibility of a cholesteatoma. If this is suspected during examination, it is necessary to refer the patient to an ENT specialist.

      Pain is a common symptom of otitis media, while otitis externa typically causes inflammation and swelling of the ear canal. Impacted wax can lead to deafness, but it is unlikely to cause a discharge with a foul odor. It is also improbable for a woman of 45 years to have a foreign object in her ear for three weeks.

      Understanding Cholesteatoma

      Cholesteatoma is a benign growth of squamous epithelium that can cause damage to the skull base. It is most commonly found in individuals between the ages of 10 and 20 years old. Those born with a cleft palate are at a higher risk of developing cholesteatoma, with a 100-fold increase in risk.

      The main symptoms of cholesteatoma include a persistent discharge with a foul odor and hearing loss. Other symptoms may occur depending on the extent of the growth, such as vertigo, facial nerve palsy, and cerebellopontine angle syndrome.

      During otoscopy, a characteristic attic crust may be seen in the uppermost part of the eardrum.

      Management of cholesteatoma involves referral to an ear, nose, and throat specialist for surgical removal. Early detection and treatment are important to prevent further damage to the skull base and surrounding structures.

      In summary, cholesteatoma is a non-cancerous growth that can cause significant damage if left untreated. It is important to be aware of the symptoms and seek medical attention promptly if they occur.

    • This question is part of the following fields:

      • Respiratory System
      67.2
      Seconds
  • Question 3 - A 54-year-old man complains of facial pain and discomfort during meals. He has...

    Incorrect

    • A 54-year-old man complains of facial pain and discomfort during meals. He has been experiencing halitosis and a dry mouth. Additionally, he has a lump under his left mandible. What is the probable underlying diagnosis?

      Your Answer: Stone impacted in Stensens duct

      Correct Answer: Stone impacted in Whartons duct

      Explanation:

      The signs are indicative of sialolithiasis, which usually involves the formation of stones in the submandibular gland and can block Wharton’s duct. Stensen’s duct, on the other hand, is responsible for draining the parotid gland.

      Diseases of the Submandibular Glands

      The submandibular glands are responsible for producing mixed seromucinous secretions, which can range from more serous to more mucinous depending on parasympathetic activity. These glands secrete approximately 800-1000ml of saliva per day, with parasympathetic fibers derived from the chorda tympani nerves and the submandibular ganglion. However, several conditions can affect the submandibular glands.

      One such condition is sialolithiasis, which occurs when salivary gland calculi form in the submandibular gland. These stones are usually composed of calcium phosphate or calcium carbonate and can cause colicky pain and postprandial swelling of the gland. Sialography is used to investigate the site of obstruction and associated stones, with impacted stones in the distal aspect of Wharton’s duct potentially removed orally. However, other stones and chronic inflammation may require gland excision.

      Sialadenitis is another condition that can affect the submandibular glands, usually as a result of Staphylococcus aureus infection. This can cause pus to leak from the duct and erythema to be noted. A submandibular abscess may develop, which is a serious complication as it can spread through other deep fascial spaces and occlude the airway.

      Finally, submandibular tumors can also affect these glands, with only 8% of salivary gland tumors affecting the submandibular gland. Of these, 50% are malignant, usually adenoid cystic carcinoma. Diagnosis usually involves fine needle aspiration cytology, with imaging using CT and MRI. Due to the high prevalence of malignancy, all masses of the submandibular glands should generally be excised.

    • This question is part of the following fields:

      • Respiratory System
      1140.6
      Seconds
  • Question 4 - A father brings his 5-year-old daughter to the GP with a 72-hour history...

    Incorrect

    • A father brings his 5-year-old daughter to the GP with a 72-hour history of left ear pain. She has had a cough with coryzal symptoms for the past four days. She has no past medical history, allergies or current medications, and she is up-to-date with her vaccinations. Her temperature is 38.5ÂșC. No abnormality is detected on examination of the oral cavity. Following otoscopy, what is the most likely causative pathogen for her diagnosis of otitis media?

      Your Answer: Rhinovirus

      Correct Answer: Streptococcus pneumoniae

      Explanation:

      Otitis media is primarily caused by bacteria, with viral URTIs often preceding the infection. The majority of cases are secondary to bacterial infections, with the most common culprit being…

      Acute otitis media is a common condition in young children, often caused by bacterial infections following viral upper respiratory tract infections. Symptoms include ear pain, fever, and hearing loss, and diagnosis is based on criteria such as the presence of a middle ear effusion and inflammation of the tympanic membrane. Antibiotics may be prescribed in certain cases, and complications can include perforation of the tympanic membrane, hearing loss, and more serious conditions such as meningitis and brain abscess.

    • This question is part of the following fields:

      • Respiratory System
      990.7
      Seconds
  • Question 5 - Which of the following nerve roots provide nerve fibers to the ansa cervicalis?...

    Correct

    • Which of the following nerve roots provide nerve fibers to the ansa cervicalis?

      Your Answer: C1, C2 and C3

      Explanation:

      The ansa cervicalis muscles can be remembered using the acronym GHost THought SOmeone Stupid Shot Irene. These muscles include the GenioHyoid, ThyroidHyoid, Superior Omohyoid, SternoThyroid, SternoHyoid, and Inferior Omohyoid. The ansa cervicalis is made up of a superior and inferior root, which originate from C1, C2, and C3. The superior root begins where the nerve crosses the internal carotid artery and descends in the anterior triangle of the neck. The inferior root joins the superior root in the mid neck region and can pass either superficially or deep to the internal jugular vein.

      The ansa cervicalis is a nerve that provides innervation to the sternohyoid, sternothyroid, and omohyoid muscles. It is composed of two roots: the superior root, which branches off from C1 and is located anterolateral to the carotid sheath, and the inferior root, which is derived from the C2 and C3 roots and passes posterolateral to the internal jugular vein. The inferior root enters the inferior aspect of the strap muscles, which are located in the neck, and should be divided in their upper half when exposing a large goitre. The ansa cervicalis is situated in front of the carotid sheath and is an important nerve for the proper functioning of the neck muscles.

    • This question is part of the following fields:

      • Respiratory System
      31.8
      Seconds
  • Question 6 - A patient is being anaesthetised for a minor bowel surgery. Sarah, a second...

    Correct

    • A patient is being anaesthetised for a minor bowel surgery. Sarah, a second year medical student is present and is asked to assist the anaesthetist during intubation. The anaesthetist inserts a laryngoscope in the patient's mouth and asks Sarah to identify the larynx.

      Which one of the following anatomical landmarks corresponds to the position of the structure being identified by the student?

      Your Answer: C3-C6

      Explanation:

      The larynx is located in the front of the neck, specifically at the level of the vertebrae C3-C6. This area also includes important anatomical landmarks such as the Atlas and Axis vertebrae (C1-C2), the thyroid cartilage (C5), and the pulmonary hilum (T5-T7).

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      189.7
      Seconds
  • Question 7 - A 25-year-old woman presents to the Emergency department with sudden onset of difficulty...

    Correct

    • A 25-year-old woman presents to the Emergency department with sudden onset of difficulty breathing. She has a history of asthma but is otherwise healthy. Upon admission, she is observed to be breathing rapidly, using her accessory muscles, and is experiencing cold and clammy skin. Upon chest auscultation, widespread wheezing is detected.

      An arterial blood gas analysis reveals:

      pH 7.46
      pO2 13 kPa
      pCO2 2.7 kPa
      HCO3- 23 mmol/l

      Which aspect of the underlying disease is affected in this patient?

      Your Answer: Forced Expiratory Volume

      Explanation:

      It is probable that this individual is experiencing an acute episode of asthma. Asthma is a condition that results in the constriction of the airways, known as an obstructive airway disease. Its distinguishing feature is its ability to be reversed. The forced expiratory volume is the most impacted parameter in asthma and other obstructive airway diseases.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      147.3
      Seconds
  • Question 8 - An 80-year-old man has been referred to the respiratory clinic due to a...

    Incorrect

    • An 80-year-old man has been referred to the respiratory clinic due to a persistent dry cough and hoarse voice for the last 5 months. He reports feeling like he has lost some weight as his clothes feel loose. Although he has no significant past medical history, he has a 30-pack-year smoking history. During the examination, left-sided miosis and ptosis are noted. What is the probable location of the lung lesion?

      Your Answer: Perihilar region

      Correct Answer: Lung apex

      Explanation:

      The patient’s persistent cough, significant smoking history, and weight loss are red flag symptoms of lung cancer. Additionally, the hoarseness of voice suggests that the recurrent laryngeal nerve is being suppressed, likely due to a Pancoast tumor located in the apex of the lung. The presence of Horner’s syndrome further supports this diagnosis. Mesothelioma, which is more common in patients with a history of asbestos exposure, typically presents with shortness of breath, chest wall pain, and finger clubbing. A hamartoma, a benign tumor made up of tissue such as cartilage, connective tissue, and fat, is unlikely given the patient’s red flags for malignant disease. Small cell carcinomas, typically found in the center of the lungs, may present with a perihilar mass and paraneoplastic syndromes due to ectopic hormone secretion. Lung cancers within the bronchi can obstruct airways and cause respiratory symptoms such as cough and shortness of breath, but not hoarseness.

      Lung Cancer Symptoms and Complications

      Lung cancer is a serious condition that can cause a range of symptoms and complications. Some of the most common symptoms include a persistent cough, haemoptysis (coughing up blood), dyspnoea (shortness of breath), chest pain, weight loss and anorexia, and hoarseness. In some cases, patients may also experience supraclavicular lymphadenopathy or persistent cervical lymphadenopathy, as well as clubbing and a fixed, monophonic wheeze.

      In addition to these symptoms, lung cancer can also cause a range of paraneoplastic features. These may include the secretion of ADH, ACTH, or parathyroid hormone-related protein (PTH-rp), which can cause hypercalcaemia, hypertension, hyperglycaemia, hypokalaemia, alkalosis, muscle weakness, and other complications. Other paraneoplastic features may include Lambert-Eaton syndrome, hypertrophic pulmonary osteoarthropathy (HPOA), hyperthyroidism due to ectopic TSH, and gynaecomastia.

      Complications of lung cancer may include hoarseness, stridor, and superior vena cava syndrome. Patients may also experience a thrombocytosis, which can be detected through blood tests. Overall, it is important to be aware of the symptoms and complications of lung cancer in order to seek prompt medical attention and receive appropriate treatment.

    • This question is part of the following fields:

      • Respiratory System
      119.9
      Seconds
  • Question 9 - As the pregnancy progresses, at what stage does the foetus typically begin producing...

    Incorrect

    • As the pregnancy progresses, at what stage does the foetus typically begin producing surfactant?

      A mother has been informed that she will have to deliver her baby prematurely due to complications in the pregnancy. To decrease the chances of neonatal distress syndrome, doctors have administered steroids to stimulate surfactant production in the foetus. They clarify that the foetus is already generating its own surfactant, and these steroids will enhance the process.

      Your Answer: Week 10

      Correct Answer: Week 22

      Explanation:

      Lung development in humans begins at week 4 with the formation of the respiratory diverticulum. By week 10, the lungs start to grow as tertiary bronchial buds form. Terminal bronchioles begin to form around week 18. The saccular stage of lung development, which marks the earliest viability for a human fetus, occurs at around 22-24 weeks when type 2 alveolar cells start producing surfactant. By week 30, the primary alveoli form as the mesenchyme surrounding the lungs becomes highly vascular.

      The Importance of Pulmonary Surfactant in Breathing

      Pulmonary surfactant is a substance composed of phospholipids, carbohydrates, and proteins that is released by type 2 pneumocytes. Its main component, dipalmitoyl phosphatidylcholine (DPPC), plays a crucial role in reducing alveolar surface tension. This substance is first detectable around 28 weeks and increases in concentration as the alveoli decrease in size. This helps prevent the alveoli from collapsing and reduces the muscular force needed to expand the lungs, ultimately decreasing the work of breathing. Additionally, pulmonary surfactant lowers the elastic recoil at low lung volumes, preventing the alveoli from collapsing at the end of each expiration. Overall, pulmonary surfactant is essential in maintaining proper lung function and preventing respiratory distress.

    • This question is part of the following fields:

      • Respiratory System
      19.2
      Seconds
  • Question 10 - A 75-year-old man presents with a 2-month history of progressive shortness of breath...

    Correct

    • A 75-year-old man presents with a 2-month history of progressive shortness of breath and a recent episode of coughing up blood in the morning. He has also experienced significant weight loss of over 12 lbs and loss of appetite. Upon physical examination, conjunctival pallor is noted. The patient has a 30 pack year history of smoking. A chest x-ray reveals a mediastinal mass and ipsilateral elevation of the right diaphragm. What structure is being compressed by the mediastinal mass to explain these findings?

      Your Answer: Phrenic nerve

      Explanation:

      Lung cancer can cause the hemidiaphragm on the same side to rise due to pressure on the phrenic nerve. Haemoptysis is a common symptom of lung cancer, along with significant weight loss and a history of smoking. A chest x-ray can confirm the presence of a mediastinal mass, which is likely to be lung cancer.

      A rapidly expanding lung mass can cause compression of surrounding structures, leading to complications. For example, an apical tumor can compress the brachial plexus, causing sensory symptoms in the arms or Erb’s or Klumpke’s palsies. Compression of the cervical sympathetic chain can cause Horner’s syndrome, which includes meiosis, anhidrosis, ptosis, and enophthalmos.

      A mediastinal mass can also compress the recurrent laryngeal nerve as it winds around the aortic arch, resulting in hoarseness of voice or aphonia. Superior vena caval syndrome is a medical emergency that can cause swelling of the face, neck, upper chest, and arms, as well as the development of collaterals on the chest wall. Malignancy is the most common cause, but non-malignant causes can include an aortic aneurysm, fibrosing mediastinitis, or iatrogenic factors.

      The Phrenic Nerve: Origin, Path, and Supplies

      The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.

      The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.

      Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.

    • This question is part of the following fields:

      • Respiratory System
      43.1
      Seconds
  • Question 11 - A 35-year-old female patient presents to the GP with complaints of headaches, nasal...

    Incorrect

    • A 35-year-old female patient presents to the GP with complaints of headaches, nasal congestion, and facial pain that worsens upon leaning forward. Sinusitis is suspected. Which sinus is typically affected in this condition?

      Your Answer:

      Correct Answer: Maxillary

      Explanation:

      The maxillary sinus is susceptible to infections due to its drainage from the top. This sinus is the most frequently affected in cases of sinusitis. While frontal sinusitis can lead to intracranial complications, it is still less common than maxillary sinusitis.

      The petrosal sinus is not a bone cavity, but rather a venous structure situated beneath the brain.

      Acute sinusitis is a condition where the mucous membranes of the paranasal sinuses become inflamed. This inflammation is usually caused by infectious agents such as Streptococcus pneumoniae, Haemophilus influenzae, and rhinoviruses. Certain factors can predispose individuals to this condition, including nasal obstruction, recent local infections, swimming/diving, and smoking. Symptoms of acute sinusitis include facial pain, nasal discharge, and nasal obstruction. Treatment options include analgesia, intranasal decongestants or nasal saline, and intranasal corticosteroids. Oral antibiotics may be necessary for severe presentations, but they are not typically required. In some cases, an initial viral sinusitis can worsen due to secondary bacterial infection, which is known as double-sickening.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 12 - A 27-year-old man with a history of epilepsy is admitted to the hospital...

    Incorrect

    • A 27-year-old man with a history of epilepsy is admitted to the hospital after experiencing a tonic-clonic seizure. He is currently taking sodium valproate as his only medication. A venous blood gas is obtained immediately.

      What are the expected venous blood gas results for this patient?

      Your Answer:

      Correct Answer: Low pH, high lactate, low SaO2

      Explanation:

      Acidosis shifts the oxygen dissociation curve to the right, which enhances oxygen delivery to the tissues by causing more oxygen to dissociate from Hb. postictal lactic acidosis is a common occurrence in patients with tonic-clonic seizures, and it is typically managed by monitoring for spontaneous resolution. During a seizure, tissue hypoxia can cause lactic acidosis. Therefore, a venous blood gas test for this patient should show low pH, high lactate, and low SaO2.

      If the venous blood gas test shows a high pH, normal lactate, and low SaO2, it would not be consistent with postictal lactic acidosis. This result indicates alkalosis, which can be caused by gastrointestinal losses, renal losses, or Cushing syndrome.

      A high pH, normal lactate, and normal SaO2 would also be inconsistent with postictal lactic acidosis because tissue hypoxia would cause an increase in lactate levels.

      Similarly, low pH, high lactate, and normal SaO2 would not be expected in postictal lactic acidosis because acidosis would shift the oxygen dissociation curve to the right, decreasing the oxygen saturation of haemoglobin.

      Finally, normal pH, normal lactate, and normal SaO2 are unlikely to be found in this patient shortly after a seizure. However, if the venous blood gas test was taken days after the seizure following an uncomplicated clinical course, these findings would be more plausible.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 13 - A 29-year-old cyclist is brought to the emergency department by air ambulance following...

    Incorrect

    • A 29-year-old cyclist is brought to the emergency department by air ambulance following a car collision. She was intubated at the scene and currently has a Glasgow Coma Score of 8. Where is the control and regulation of the respiratory centers located?

      Your Answer:

      Correct Answer: Brainstem

      Explanation:

      The brainstem houses the respiratory centres, which are responsible for regulating various aspects of breathing. These centres are located in the upper pons, lower pons and medulla oblongata.

      The thalamus plays a role in sensory, motor and cognitive functions, and its axons connect with the cerebral cortex. The cerebellum coordinates voluntary movements and helps maintain balance and posture. The parietal lobe processes sensory information, including discrimination and body orientation. The primary visual cortex is located in the occipital lobe.

      The Control of Ventilation in the Human Body

      The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.

      The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.

      Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.

      Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 14 - An 87-year-old man with a history of interstitial lung disease is admitted with...

    Incorrect

    • An 87-year-old man with a history of interstitial lung disease is admitted with fever, productive cough, and difficulty breathing. His inflammatory markers are elevated, and a chest x-ray reveals focal patchy consolidation in the right lung. He requires oxygen supplementation as his oxygen saturation level is 87% on room air. What factor causes a decrease in haemoglobin's affinity for oxygen?

      Your Answer:

      Correct Answer: Increase in temperature

      Explanation:

      What effect does pyrexia have on the oxygen dissociation curve?

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 15 - A 42-year-old male patient comes to the clinic complaining of shoulder weakness. During...

    Incorrect

    • A 42-year-old male patient comes to the clinic complaining of shoulder weakness. During the examination, it is observed that he cannot initiate shoulder abduction. Which of the following nerves is most likely to be dysfunctional?

      Your Answer:

      Correct Answer: Suprascapular nerve

      Explanation:

      The Suprascapular Nerve and its Function

      The suprascapular nerve is a nerve that originates from the upper trunk of the brachial plexus. It is located superior to the trunks of the brachial plexus and runs parallel to them. The nerve passes through the scapular notch, which is located deep to the trapezius muscle. Its main function is to innervate both the supraspinatus and infraspinatus muscles, which are responsible for initiating abduction of the shoulder.

      If the suprascapular nerve is damaged, patients may experience difficulty in initiating abduction of the shoulder. However, they may still be able to abduct the shoulder by leaning over the affected side, as the deltoid muscle can then continue to abduct the shoulder. Overall, the suprascapular nerve plays an important role in the movement and function of the shoulder joint.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 16 - A 59-year-old man comes to you with a dry cough that has been...

    Incorrect

    • A 59-year-old man comes to you with a dry cough that has been going on for three months and recent episodes of haemoptysis. He stopped smoking five years ago and has had two bouts of pneumonia in his left lower lobe in the last year. On examination, he is apyrexial and there are no notable findings.

      What would be your first step in investigating this patient?

      Your Answer:

      Correct Answer: Chest x ray

      Explanation:

      Diagnosis of Bronchial Carcinoma

      The patient’s medical history indicates the possibility of bronchial carcinoma. The most appropriate initial investigation to confirm this diagnosis is a chest x-ray. Other tests such as blood cultures may not be useful for an apyrexial patient. However, additional investigations may be considered after the chest x-ray. It is important to prioritize the chest x-ray as the first line investigation to detect any abnormalities in the lungs. Proper diagnosis is crucial for timely treatment and management of bronchial carcinoma.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 17 - A 59-year-old man has been found to have cancer. He is experiencing a...

    Incorrect

    • A 59-year-old man has been found to have cancer. He is experiencing a range of symptoms, some of which appear to be unrelated to the location or size of the tumor. This is due to the fact that cancerous tissue can acquire the ability to produce endocrine effects on other cells in the body. Can you provide an instance of this phenomenon?

      Your Answer:

      Correct Answer: Production of PTH

      Explanation:

      Paraneoplastic syndrome is a set of symptoms that arise from the secretion of hormones and cytokines by cancer cells or the immune system’s response to the tumor.

      Squamous cell lung cancer often produces PTHrP (parathyroid hormone-related protein), which leads to hypercalcemia in affected patients.

      Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 18 - A 65-year-old man presents with a persistent dry cough and unintentional weight loss...

    Incorrect

    • A 65-year-old man presents with a persistent dry cough and unintentional weight loss of 5kg over the past 3 months. He denies experiencing chest pain, dyspnoea, fever or haemoptysis. The patient has a history of smoking 10 cigarettes a day for the last 50 years and has been diagnosed with COPD. A nodule is detected on chest x-ray, and biopsy results indicate a tumour originating from the bronchial glands.

      What is the most probable diagnosis?

      Your Answer:

      Correct Answer: Adenocarcinoma of the lung

      Explanation:

      Adenocarcinoma has become the most prevalent form of lung cancer, originating from the bronchial glands as a type of non-small-cell lung cancer.

      While a bronchogenic cyst may cause chest pain and dysphagia, it is typically diagnosed during childhood and does not stem from the bronchial glands.

      Sarcoidosis may result in a persistent cough and weight loss, but it typically affects multiple systems and does not involve nodules originating from the bronchial glands.

      Small cell carcinoma of the lung is a significant consideration, but given the description of a tumor originating from the bronchial glands, adenocarcinoma is the more probable diagnosis.

      Lung cancer can be classified into two main types: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). SCLC is less common, accounting for only 15% of cases, but has a worse prognosis. NSCLC, on the other hand, is more prevalent and can be further broken down into different subtypes. Adenocarcinoma is now the most common type of lung cancer, likely due to the increased use of low-tar cigarettes. It is often seen in non-smokers and accounts for 62% of cases in ‘never’ smokers. Squamous cell carcinoma is another subtype, and cavitating lesions are more common in this type of lung cancer. Large cell carcinoma, alveolar cell carcinoma, bronchial adenoma, and carcinoid are other subtypes of NSCLC. Differentiating between these subtypes is crucial as different drugs are available to treat each subtype.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 19 - A 44-year-old male singer visits his GP complaining of a hoarse voice that...

    Incorrect

    • A 44-year-old male singer visits his GP complaining of a hoarse voice that has persisted for a few weeks. He first noticed it after his thyroidectomy. Upon reviewing his post-thyroidectomy report, it was noted that he experienced a complication related to external laryngeal nerve injury. Which muscle's loss of innervation could be responsible for this patient's symptoms?

      Your Answer:

      Correct Answer: Cricothyroid

      Explanation:

      The external laryngeal nerve is responsible for innervating the cricothyroid muscle. If this nerve is injured, it can result in paralysis of the cricothyroid muscle, which is often referred to as the tuning fork of the larynx. This can cause hoarseness in the patient. However, over time, the other muscles will compensate for the paralysis, and the hoarseness will improve. It is important to note that the recurrent laryngeal nerve is responsible for innervating the rest of the muscles.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 20 - A 67-year-old man has been diagnosed with stage III lung cancer and is...

    Incorrect

    • A 67-year-old man has been diagnosed with stage III lung cancer and is concerned about potential complications. What are the risks he may face?

      Your Answer:

      Correct Answer: Pneumothorax

      Explanation:

      Pneumothorax is more likely to occur in individuals with lung cancer.

      Pneumothorax: Characteristics and Risk Factors

      Pneumothorax is a medical condition characterized by the presence of air in the pleural cavity, which is the space between the lungs and the chest wall. This condition can occur spontaneously or as a result of trauma or medical procedures. There are several risk factors associated with pneumothorax, including pre-existing lung diseases such as COPD, asthma, cystic fibrosis, lung cancer, and Pneumocystis pneumonia. Connective tissue diseases like Marfan’s syndrome and rheumatoid arthritis can also increase the risk of pneumothorax. Ventilation, including non-invasive ventilation, can also be a risk factor.

      Symptoms of pneumothorax tend to come on suddenly and can include dyspnoea, chest pain (often pleuritic), sweating, tachypnoea, and tachycardia. In some cases, catamenial pneumothorax can be the cause of spontaneous pneumothoraces occurring in menstruating women. This type of pneumothorax is thought to be caused by endometriosis within the thorax. Early diagnosis and treatment of pneumothorax are crucial to prevent complications and improve outcomes.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 21 - A 65-year-old man is having a coronary artery bypass surgery. Which structure would...

    Incorrect

    • A 65-year-old man is having a coronary artery bypass surgery. Which structure would typically need to be divided during the median sternotomy procedure?

      Your Answer:

      Correct Answer: Interclavicular ligament

      Explanation:

      During a median sternotomy, the interclavicular ligament is typically cut to allow access. However, it is important to avoid intentionally cutting the pleural reflections, as this can lead to the accumulation of fluid in the pleural cavity and require the insertion of a chest drain. The pectoralis major muscles may also be encountered, but if the incision is made in the midline, they should not need to be formally divided. It is crucial to be mindful of the proximity of the brachiocephalic vein and avoid injuring it, as this can result in significant bleeding.

      Sternotomy Procedure

      A sternotomy is a surgical procedure that involves making an incision in the sternum to access the heart and great vessels. The most common type of sternotomy is a median sternotomy, which involves making a midline incision from the interclavicular fossa to the xiphoid process. The fat and subcutaneous tissues are then divided to the level of the sternum, and the periosteum may be gently mobilized off the midline. However, it is important to avoid vigorous periosteal stripping. A bone saw is used to divide the bone itself, and bleeding from the bony edges of the cut sternum is stopped using roller ball diathermy or bone wax.

      Posteriorly, the reflections of the parietal pleura should be identified and avoided, unless surgery to the lung is planned. The fibrous pericardium is then incised, and the heart is brought into view. It is important to avoid the left brachiocephalic vein, which is an important posterior relation at the superior aspect of the sternotomy incision. More inferiorly, the thymic remnants may be identified. At the inferior aspect of the incision, the abdominal cavity may be entered, although this is seldom troublesome.

      Overall, a sternotomy is a complex surgical procedure that requires careful attention to detail and a thorough understanding of the anatomy of the chest and heart. By following the proper techniques and precautions, surgeons can safely access the heart and great vessels to perform a variety of life-saving procedures.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 22 - A 60-year-old male patient complains of chronic productive cough and difficulty breathing. He...

    Incorrect

    • A 60-year-old male patient complains of chronic productive cough and difficulty breathing. He has been smoking 10 cigarettes per day for the past 30 years. What is the number of pack years equivalent to his smoking history?

      Your Answer:

      Correct Answer: 15

      Explanation:

      Pack Year Calculation

      Pack year calculation is a tool used to estimate the risk of tobacco exposure. It is calculated by multiplying the number of packs of cigarettes smoked per day by the number of years of smoking. One pack of cigarettes contains 20 cigarettes. For instance, if a person smoked half a pack of cigarettes per day for 30 years, their pack year history would be 15 (1/2 x 30 = 15).

      The pack year calculation is a standardized method of measuring tobacco exposure. It helps healthcare professionals to estimate the risk of developing smoking-related diseases such as lung cancer, chronic obstructive pulmonary disease (COPD), and heart disease. The higher the pack year history, the greater the risk of developing these diseases. Therefore, it is important for individuals who smoke or have a history of smoking to discuss their pack year history with their healthcare provider to determine appropriate screening and prevention measures.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 23 - A 63-year-old man visits his GP complaining of worsening shortness of breath. He...

    Incorrect

    • A 63-year-old man visits his GP complaining of worsening shortness of breath. He was diagnosed with COPD six years ago and has been frequently admitted to the emergency department due to lower respiratory tract infections, especially in the past year. He has a smoking history of 50 pack-years and currently smokes 20 cigarettes per day.

      During the examination, the patient appears to be struggling to breathe even at rest and is in the tripod position. His heart rate is 78/min, blood pressure is 140/88 mmHg, oxygen saturation is 88% on air, respiratory rate is 26 breaths per minute, and temperature is 36.4ÂșC. His chest expansion is symmetrical, and breath sounds are equal throughout the lung fields.

      Recent spirometry results show that his FEV1 was 47% a week ago, 53% a month ago, and 67% six months ago. What intervention would be most effective in slowing the decline of his FEV1?

      Your Answer:

      Correct Answer: Smoking cessation

      Explanation:

      Slowing the decrease in FEV1 in COPD can be most effectively achieved by quitting smoking.

      The National Institute for Health and Care Excellence (NICE) updated its guidelines on the management of chronic obstructive pulmonary disease (COPD) in 2018. The guidelines recommend general management strategies such as smoking cessation advice, annual influenzae vaccination, and one-off pneumococcal vaccination. Pulmonary rehabilitation is also recommended for patients who view themselves as functionally disabled by COPD.

      Bronchodilator therapy is the first-line treatment for patients who remain breathless or have exacerbations despite using short-acting bronchodilators. The next step is determined by whether the patient has asthmatic features or features suggesting steroid responsiveness. NICE suggests several criteria to determine this, including a previous diagnosis of asthma or atopy, a higher blood eosinophil count, substantial variation in FEV1 over time, and substantial diurnal variation in peak expiratory flow.

      If the patient does not have asthmatic features or features suggesting steroid responsiveness, a long-acting beta2-agonist (LABA) and long-acting muscarinic antagonist (LAMA) should be added. If the patient is already taking a short-acting muscarinic antagonist (SAMA), it should be discontinued and switched to a short-acting beta2-agonist (SABA). If the patient has asthmatic features or features suggesting steroid responsiveness, a LABA and inhaled corticosteroid (ICS) should be added. If the patient remains breathless or has exacerbations, triple therapy (LAMA + LABA + ICS) should be offered.

      NICE only recommends theophylline after trials of short and long-acting bronchodilators or to people who cannot use inhaled therapy. Azithromycin prophylaxis is recommended in select patients who have optimised standard treatments and continue to have exacerbations. Mucolytics should be considered in patients with a chronic productive cough and continued if symptoms improve.

      Cor pulmonale features include peripheral oedema, raised jugular venous pressure, systolic parasternal heave, and loud P2. Loop diuretics should be used for oedema, and long-term oxygen therapy should be considered. Smoking cessation, long-term oxygen therapy in eligible patients, and lung volume reduction surgery in selected patients may improve survival in patients with stable COPD. NICE does not recommend the use of ACE-inhibitors, calcium channel blockers, or alpha blockers

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 24 - A 72-year-old woman is brought to the stroke unit with a suspected stroke....

    Incorrect

    • A 72-year-old woman is brought to the stroke unit with a suspected stroke. She has a medical history of hypertension, type II diabetes, and hypothyroidism. Additionally, she experienced a myocardial infarction 4 years ago. Upon arrival, the patient exhibited a positive FAST result and an irregular breathing pattern. An urgent brain CT scan was performed and is currently under review. What region of the brainstem is responsible for regulating the fundamental breathing rhythm?

      Your Answer:

      Correct Answer: Medulla oblongata

      Explanation:

      The medullary rhythmicity area in the medullary oblongata controls the basic rhythm of breathing through its inspiratory and expiratory neurons. During quiet breathing, the inspiratory area is active for approximately 2 seconds, causing the diaphragm and external intercostals to contract, followed by a period of inactivity lasting around 3 seconds as the muscles relax and there is elastic recoil. Additional brainstem regions can be stimulated to regulate various aspects of breathing, such as extending inspiration in the apneustic area (refer to the table below).

      The Control of Ventilation in the Human Body

      The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.

      The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.

      Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.

      Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 25 - A 32-year-old woman arrives at the emergency department complaining of sudden shortness of...

    Incorrect

    • A 32-year-old woman arrives at the emergency department complaining of sudden shortness of breath and a sharp pain on the right side of her chest that worsens with inspiration. Upon examination, the doctor observes hyper-resonance and reduced breath sounds on the right side of her chest.

      What is a risk factor for this condition, considering the probable diagnosis?

      Your Answer:

      Correct Answer: Cystic fibrosis

      Explanation:

      Pneumothorax can be identified by reduced breath sounds and a hyper-resonant chest on the same side as the pain. Cystic fibrosis is a significant risk factor for pneumothorax due to the frequent chest infections, lung remodeling, and air trapping associated with the disease. While tall, male smokers are also at increased risk, Marfan’s syndrome, not Turner syndrome, is a known risk factor.

      Pneumothorax: Characteristics and Risk Factors

      Pneumothorax is a medical condition characterized by the presence of air in the pleural cavity, which is the space between the lungs and the chest wall. This condition can occur spontaneously or as a result of trauma or medical procedures. There are several risk factors associated with pneumothorax, including pre-existing lung diseases such as COPD, asthma, cystic fibrosis, lung cancer, and Pneumocystis pneumonia. Connective tissue diseases like Marfan’s syndrome and rheumatoid arthritis can also increase the risk of pneumothorax. Ventilation, including non-invasive ventilation, can also be a risk factor.

      Symptoms of pneumothorax tend to come on suddenly and can include dyspnoea, chest pain (often pleuritic), sweating, tachypnoea, and tachycardia. In some cases, catamenial pneumothorax can be the cause of spontaneous pneumothoraces occurring in menstruating women. This type of pneumothorax is thought to be caused by endometriosis within the thorax. Early diagnosis and treatment of pneumothorax are crucial to prevent complications and improve outcomes.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 26 - A 60-year-old diabetic patient presents to the clinic with a chief complaint of...

    Incorrect

    • A 60-year-old diabetic patient presents to the clinic with a chief complaint of hearing loss. After conducting a Webber’s and Rinne’s test, the following results were obtained:

      - Webber’s test: lateralizes to the left ear
      - Rinne’s test (left ear): bone conduction > air conduction
      - Rinne’s test (right ear): air conduction > bone conduction

      Based on these findings, what is the probable cause of the patient's hearing loss?

      Your Answer:

      Correct Answer: Otitis media with effusion

      Explanation:

      The Weber test lateralises to the side with bone conduction > air conduction, indicating conductive hearing loss on that side. The options given include acoustic neuroma (sensorineural hearing loss), otitis media with effusion (conductive hearing loss), temporal lobe epilepsy (no conductive hearing loss), and Meniere’s disease (vertigo, tinnitus, and fluctuating hearing loss). The correct answer is otitis media with effusion.

      Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness

      Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.

      Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.

      The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.

      Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 27 - A 65-year-old woman comes to the clinic complaining of fever and productive cough...

    Incorrect

    • A 65-year-old woman comes to the clinic complaining of fever and productive cough for the past two days. She spends most of her time at home watching TV and rarely goes outside. She has no recent travel history. The patient has a history of gastroesophageal reflux disease but has not been compliant with medication and follow-up appointments. Upon physical examination, crackles are heard on the left lower lobe, and her sputum is described as 'red-currant jelly.'

      What is the probable causative organism in this case?

      Your Answer:

      Correct Answer: Klebsiella pneumoniae

      Explanation:

      The patient’s history of severe gastro-oesophageal reflux disease (GORD) suggests that she may have aspiration pneumonia, particularly as she had not received appropriate treatment for it. Aspiration of gastric contents is likely to occur in the right lung due to the steep angle of the right bronchus. Klebsiella pneumoniae is a common cause of aspiration pneumonia and is known to produce ‘red-currant jelly’ sputum.

      Mycoplasma pneumoniae is a cause of atypical pneumonia, which typically presents with a non-productive cough and clear lung sounds on auscultation. It is more common in younger individuals.

      Burkholderia pseudomallei is the causative organism for melioidosis, a condition that is transmitted through exposure to contaminated water or soil, and is more commonly found in Southeast Asia. However, given the patient’s sedentary lifestyle and lack of travel history, it is unlikely to be the cause of her symptoms.

      Streptococcus pneumoniae is the most common cause of pneumonia, but it typically produces yellowish-green sputum rather than the red-currant jelly sputum seen in Klebsiella pneumoniae infections. It also presents with fever, productive cough, and crackles on auscultation.

      Understanding Klebsiella Pneumoniae

      Klebsiella pneumoniae is a type of bacteria that is commonly found in the gut flora of humans. However, it can also cause various infections such as pneumonia and urinary tract infections. It is more prevalent in individuals who have alcoholism or diabetes. Aspiration is a common cause of pneumonia caused by Klebsiella pneumoniae. One of the distinct features of this type of pneumonia is the production of red-currant jelly sputum. It usually affects the upper lobes of the lungs.

      The prognosis for Klebsiella pneumoniae infections is not good. It often leads to the formation of lung abscesses and empyema, which can be fatal. The mortality rate for this type of infection is between 30-50%.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 28 - A 50-year-old woman comes to see you at the clinic with progressive muscle...

    Incorrect

    • A 50-year-old woman comes to see you at the clinic with progressive muscle weakness, numbness, and tingling in her left arm. She reports experiencing neck and shoulder pain on the left side as well. She has no significant medical history and is generally healthy. She denies any recent injuries or trauma. Based on your clinical assessment, you suspect that she may have thoracic outlet syndrome.

      What additional physical finding is most likely to confirm your suspicion of thoracic outlet syndrome in this patient?

      Your Answer:

      Correct Answer: Absent radial pulse

      Explanation:

      Compression of the subclavian artery by a cervical rib can result in an absent radial pulse, which is a common symptom of thoracic outlet syndrome. Adson’s test can be used to diagnose this condition, which can be mistaken for cervical radiculopathy. Flapping tremors are typically observed in patients with encephalopathy caused by liver failure or carbon dioxide retention. An irregular pulse may indicate an arrhythmia like atrial fibrillation or heart block. Aortic stenosis, which is characterized by an ejection systolic murmur, often causes older patients to experience loss of consciousness during physical activity. A bounding pulse, on the other hand, is a sign of strong myocardial contractions that may be caused by heart failure, arrhythmias, pregnancy, or thyroid disease.

      Cervical ribs are a rare anomaly that affects only 0.2-0.4% of the population. They are often associated with neurological symptoms and are caused by an anomalous fibrous band that originates from the seventh cervical vertebrae and may arc towards the sternum. While most cases are congenital and present around the third decade of life, some cases have been reported to occur following trauma. Bilateral cervical ribs are present in up to 70% of cases. Compression of the subclavian artery can lead to absent radial pulse and a positive Adsons test, which involves lateral flexion of the neck towards the symptomatic side and traction of the symptomatic arm. Treatment is usually only necessary when there is evidence of neurovascular compromise, and the traditional operative method for excision is a transaxillary approach.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 29 - You are clerking a 45-year-old patient on the neurosurgery ward who is scheduled...

    Incorrect

    • You are clerking a 45-year-old patient on the neurosurgery ward who is scheduled to undergo a pituitary tumour removal surgery. During your conversation, the patient inquires about the procedure. As you are aware, the neurosurgeon gains access to the pituitary gland through the patient's nasal cavity, specifically through one of the paranasal sinuses. Can you identify which of the paranasal sinuses is situated on the roof of the posterior nasal cavity, below the pituitary gland?

      Your Answer:

      Correct Answer: Sphenoid sinus

      Explanation:

      Paranasal Air Sinuses and Carotid Sinus

      The paranasal air sinuses are air-filled spaces found in the bones of the skull. They are named after the bone in which they are located and all communicate with the nasal cavity. The four paired paranasal air sinuses are the frontal sinuses, maxillary sinuses, ethmoid air cells, and sphenoid sinuses. The frontal sinuses are located above each eye on the forehead, while the maxillary sinuses are the largest and found in the maxillary bone below the orbit. The ethmoidal air cells are a collection of smaller air cells located lateral to the anterior superior nasal cavity, while the sphenoid sinuses are found in the posterior portion of the roof of the nasal cavity.

      On the other hand, the carotid sinus is not a paranasal air sinus. It is a dilatation of the internal carotid artery, located just beyond the bifurcation of the common carotid artery. It contains baroreceptors that enable it to detect changes in arterial pressure.

      Overall, understanding the location and function of these sinuses and the carotid sinus is important in various medical procedures and conditions.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 30 - A 55-year-old man visits his GP complaining of shortness of breath, haemoptysis, and...

    Incorrect

    • A 55-year-old man visits his GP complaining of shortness of breath, haemoptysis, and unintentional weight loss over the past 3 months. The GP refers him to the respiratory clinic for suspected lung cancer, and further investigations reveal a stage 2 squamous cell carcinoma of the lung. What is the most frequently associated paraneoplastic phenomenon with this type of cancer?

      Your Answer:

      Correct Answer: Parathyroid hormone-related protein (PTHrP)

      Explanation:

      The correct answer is PTHrP, which is a paraneoplastic syndrome often associated with squamous cell lung cancer. PTHrP is a protein that functions similarly to parathyroid hormone and can cause hypercalcaemia when secreted by cancer cells.

      Acanthosis nigricans is another paraneoplastic phenomenon that is commonly associated with gastric adenocarcinoma. This condition causes hyperpigmentation of skin folds, such as the armpits.

      The syndrome of inappropriate ADH secretion is often linked to small cell lung cancer. This condition involves the hypersecretion of ADH, which leads to dilutional hyponatraemia and its associated symptoms.

      Carcinoid syndrome is a paraneoplastic syndrome that is typically associated with neuroendocrine tumours that have metastasised to the liver. This condition causes hypersecretion of serotonin and other substances, resulting in facial flushing, palpitations, and gastrointestinal upset.

      Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 31 - A 32-year-old male presents to the GP clinic complaining of vertigo. He mentions...

    Incorrect

    • A 32-year-old male presents to the GP clinic complaining of vertigo. He mentions having a mild upper respiratory tract infection one week prior. Which structure is most likely responsible for the accompanying nausea?

      Your Answer:

      Correct Answer: Vestibular system of the inner ear

      Explanation:

      Based on the symptoms presented, it is probable that the patient is experiencing viral labyrinthitis, which is a common condition that occurs after an upper respiratory tract infection. This condition causes inflammation in the vestibular system of the inner ear, leading to confusion or failure of proprioceptive signals to the brain, resulting in vertigo.

      During retching, the antrum of the stomach contracts while the cardia and fundus relax. Although vagal stimulation can arise from the stomach, it does not cause the spinning sensation associated with vertigo.

      The area postrema is located in the medulla and contains the chemoreceptor trigger zone, which is involved in receiving and transmitting signals related to the vomiting reflex. However, the specific signal for vertigo arises from the vestibular system. The pons also plays a role in communicating sensory inputs related to vomiting.

      Vertigo is a condition characterized by a false sensation of movement in the body or environment. There are various causes of vertigo, each with its own unique characteristics. Viral labyrinthitis, for example, is typically associated with a recent viral infection, sudden onset, nausea and vomiting, and possible hearing loss. Vestibular neuronitis, on the other hand, is characterized by recurrent vertigo attacks lasting hours or days, but with no hearing loss. Benign paroxysmal positional vertigo is triggered by changes in head position and lasts for only a few seconds. Meniere’s disease, meanwhile, is associated with hearing loss, tinnitus, and a feeling of fullness or pressure in the ears. Elderly patients with vertigo may be experiencing vertebrobasilar ischaemia, which is accompanied by dizziness upon neck extension. Acoustic neuroma, which is associated with hearing loss, vertigo, and tinnitus, is also a possible cause of vertigo. Other causes include posterior circulation stroke, trauma, multiple sclerosis, and ototoxicity from medications like gentamicin.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 32 - A 9-year-old boy is rushed to the emergency department following a fish bone...

    Incorrect

    • A 9-year-old boy is rushed to the emergency department following a fish bone choking incident during dinner. The patient is not experiencing any airway obstruction and has been given sufficient pain relief.

      After being referred for laryngoscopy, a fish bone is discovered in the piriform recess. What is the potential structure that could be harmed due to the location of the fish bone?

      Your Answer:

      Correct Answer: Internal laryngeal nerve

      Explanation:

      Foreign objects lodged in the piriform recess can cause damage to the internal laryngeal nerve, which is in close proximity to this area. The internal laryngeal nerve is responsible for providing sensation to the laryngeal mucosa. The ansa cervicalis, external laryngeal nerve, glossopharyngeal nerve, and superior laryngeal nerve are not at high risk of injury from foreign bodies in the piriform recess.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 33 - A 6-year-old girl is playing with some small ball bearings. Regrettably, she inhales...

    Incorrect

    • A 6-year-old girl is playing with some small ball bearings. Regrettably, she inhales one. In which of the following lung regions is the ball expected to settle?

      Your Answer:

      Correct Answer: Right lower lobe

      Explanation:

      Due to the angle of the right main bronchus from the trachea, small objects are more likely to get stuck in the most dependent part of the right lung. This makes the right lung the preferred location for most objects to enter.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 34 - A 6-month-old infant is brought to the paediatrician due to increased work of...

    Incorrect

    • A 6-month-old infant is brought to the paediatrician due to increased work of breathing. The infant was born at term and via spontaneous vaginal delivery 6 months ago.

      During the examination, the paediatrician observes moderate subcostal and intercostal recession and notes that the infant appears tachypnoeic. The infant's temperature is 38.9ÂșC, and a chest x-ray is ordered, which reveals some consolidation in the right lower zone. Broad-spectrum antibiotics are initiated.

      Upon reviewing the infant's oxygen dissociation curve, the paediatrician notes a leftward shift relative to the standard adult curve. What is the cause of this appearance in the infant's oxygen dissociation curve?

      Your Answer:

      Correct Answer: Foetal haemoglobin (HbF)

      Explanation:

      The factor that shifts the oxygen dissociation curve to the left is foetal haemoglobin (HbF). This is because HbF has a higher affinity for oxygen than adult haemoglobin, haemoglobin A, which allows maternal haemoglobin to preferentially offload oxygen to the foetus across the placenta.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 35 - A 9-month-old girl is brought to the hospital due to recurrent episodes of...

    Incorrect

    • A 9-month-old girl is brought to the hospital due to recurrent episodes of breathing difficulties. She has been experiencing a gradual worsening of symptoms, including a wet cough and expiratory wheezing, for the past 4 days.

      During the examination, her temperature is recorded at 38.2°C, and her respiratory rate is 60 breaths per minute. Oxygen saturation levels are at 92% on air. Chest examination reveals mild intercostal retractions, scattered crackles, and expiratory wheezing in both lungs.

      What is the most probable causative agent responsible for the symptoms?

      Your Answer:

      Correct Answer: Respiratory syncytial virus

      Explanation:

      Bronchiolitis is commonly caused by respiratory syncytial virus, which accounts for the majority of cases of serious lower respiratory tract infections in children under one.

      Understanding Bronchiolitis

      Bronchiolitis is a condition that is characterized by inflammation of the bronchioles. It is a serious lower respiratory tract infection that is most common in children under the age of one year. The pathogen responsible for 75-80% of cases is respiratory syncytial virus (RSV), while other causes include mycoplasma and adenoviruses. Bronchiolitis is more serious in children with bronchopulmonary dysplasia, congenital heart disease, or cystic fibrosis.

      The symptoms of bronchiolitis include coryzal symptoms, dry cough, increasing breathlessness, and wheezing. Fine inspiratory crackles may also be present. Children with bronchiolitis may experience feeding difficulties associated with increasing dyspnoea, which is often the reason for hospital admission.

      Immediate referral to hospital is recommended if the child has apnoea, looks seriously unwell to a healthcare professional, has severe respiratory distress, central cyanosis, or persistent oxygen saturation of less than 92% when breathing air. Clinicians should consider referring to hospital if the child has a respiratory rate of over 60 breaths/minute, difficulty with breastfeeding or inadequate oral fluid intake, or clinical dehydration.

      The investigation for bronchiolitis involves immunofluorescence of nasopharyngeal secretions, which may show RSV. Management of bronchiolitis is largely supportive, with humidified oxygen given via a head box if oxygen saturations are persistently < 92%. Nasogastric feeding may be needed if children cannot take enough fluid/feed by mouth, and suction is sometimes used for excessive upper airway secretions.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 36 - A 16-year-old girl presents to the Emergency department with her mother. The mother...

    Incorrect

    • A 16-year-old girl presents to the Emergency department with her mother. The mother reports that her daughter has been experiencing worsening breathlessness and facial puffiness for the past 30 minutes. Apart from eczema, the girl has been healthy and is currently taking oral contraceptives. On examination, the girl appears to be in distress, with laboured breathing and stridor but no wheezing. What is the probable cause of her breathlessness?

      Your Answer:

      Correct Answer: Angio-oedema

      Explanation:

      Noisy Breathing and Atopy in Adolescents

      The presence of noisy breathing in an adolescent may indicate the possibility of stridor, which can be caused by an allergic reaction even in an otherwise healthy individual. The history of atopy, or a tendency to develop allergic reactions, further supports the diagnosis of angio-oedema. The sudden onset of symptoms also adds to the likelihood of this diagnosis.

      While asthma is a possible differential diagnosis, it typically presents with expiratory wheezing. However, if the chest is silent, it may indicate a severe and life-threatening form of asthma. Therefore, it is important to consider all possible causes of noisy breathing and atopy in adolescents to ensure prompt and appropriate treatment.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 37 - Which of the following paraneoplastic manifestations is the LEAST frequent in individuals diagnosed...

    Incorrect

    • Which of the following paraneoplastic manifestations is the LEAST frequent in individuals diagnosed with squamous cell lung carcinoma?

      Your Answer:

      Correct Answer: Lambert-Eaton syndrome

      Explanation:

      Small cell lung cancer is strongly associated with Lambert-Eaton syndrome, while squamous cell lung cancer is more commonly associated with paraneoplastic features such as PTHrp, clubbing, and HPOA.

      Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 38 - A 45-year-old man presents to the emergency department with fever, productive cough, and...

    Incorrect

    • A 45-year-old man presents to the emergency department with fever, productive cough, and shortness of breath. He has no medical history and takes no regular medications.

      Upon examination, coarse crackles and bronchial breathing are heard at the right lung base.

      Chest radiography reveals consolidation in the lower right zone.

      Arterial blood gas results are as follows:

      pH 7.36 (7.35-7.45)
      pO2 7.2 kPa (11-13)
      pCO2 4.1 kPa (4-6)
      SaO2 87% (94-98)

      Based on the likely diagnosis, what is the expected initial physiological response?

      Your Answer:

      Correct Answer: Vasoconstriction of the pulmonary arteries

      Explanation:

      When hypoxia is present, the pulmonary arteries undergo vasoconstriction, which is the appropriate response. The patient is exhibiting symptoms of pneumonia and type 1 respiratory failure, as evidenced by clinical and radiographic findings. Vasoconstriction of the small pulmonary arteries helps to redirect blood flow from poorly ventilated regions of the lung to those with better ventilation, resulting in improved gas exchange efficiency between the alveoli and blood.

      The Effects of Hypoxia on Pulmonary Arteries

      When the partial pressure of oxygen in the blood decreases, the pulmonary arteries undergo vasoconstriction. This means that the blood vessels narrow, allowing blood to be redirected to areas of the lung that are better aerated. This response is a natural mechanism that helps to improve the efficiency of gaseous exchange in the lungs. By diverting blood to areas with more oxygen, the body can ensure that the tissues receive the oxygen they need to function properly. Overall, hypoxia triggers a physiological response that helps to maintain homeostasis in the body.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 39 - A 26-year-old man has been experiencing a chronic cough and wheeze since starting...

    Incorrect

    • A 26-year-old man has been experiencing a chronic cough and wheeze since starting a new job. He has noticed that his peak flow measurements are significantly reduced while at work but improve on the weekends. What substance is commonly linked to this type of asthma?

      Your Answer:

      Correct Answer: Isocyanates

      Explanation:

      Occupational Asthma: Causes and Symptoms

      Occupational asthma is a type of asthma that is caused by exposure to certain chemicals in the workplace. Patients may experience worsening asthma symptoms while at work or notice an improvement in symptoms when away from work. The most common cause of occupational asthma is exposure to isocyanates, which are found in spray painting and foam moulding using adhesives. Other chemicals associated with occupational asthma include platinum salts, soldering flux resin, glutaraldehyde, flour, epoxy resins, and proteolytic enzymes.

      To diagnose occupational asthma, it is recommended to measure peak expiratory flow at work and away from work. If there is a significant difference in peak expiratory flow, referral to a respiratory specialist is necessary. Treatment may include avoiding exposure to the triggering chemicals and using medications to manage asthma symptoms. It is important for employers to provide a safe working environment and for employees to report any concerns about potential exposure to harmful chemicals.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 40 - A 36-year-old man presents to his GP with symptoms of vertigo. He reports...

    Incorrect

    • A 36-year-old man presents to his GP with symptoms of vertigo. He reports that he has been experiencing constant dizziness for the past 2 days, which has prevented him from going to work. He also reports hearing difficulties and tinnitus in his right ear, as well as nausea and difficulty with balance. He notes that these symptoms are not related to changes in position. He has no significant medical history, except for a recent bout of flu that resolved on its own.

      During the examination, the man is observed to sway to the right while attempting to walk in a straight line. He also has a positive head thrust test to the right side. A complete neurological examination is performed, and aside from mild sensorineural hearing loss in the right ear, his neurological function is normal.

      Which structures are most likely involved in this man's condition?

      Your Answer:

      Correct Answer: Vestibular nerve and labyrinth

      Explanation:

      The patient is displaying symptoms of labyrinthitis, which affects both the vestibular nerve and labyrinth, resulting in vertigo and hearing impairment. In contrast, pure vestibular neuritis only causes vestibular symptoms without affecting hearing. Benign paroxysmal positional vertigo (BPPV) involves otolith displacement and is triggered by head position changes, which is not the case for this patient’s constant vertigo. Facial nerve palsy primarily causes facial drooping and does not affect hearing or vestibular function, making it an unlikely diagnosis for this patient.

      Understanding Viral Labyrinthitis

      Labyrinthitis is a condition that affects the membranous labyrinth, which includes the vestibular and cochlear end organs. It can be caused by a viral or bacterial infection, or it may be associated with systemic diseases. Viral labyrinthitis is the most common form of the condition.

      It’s important to distinguish labyrinthitis from vestibular neuritis, which only affects the vestibular nerve and doesn’t cause hearing impairment. Labyrinthitis, on the other hand, affects both the vestibular nerve and the labyrinth, resulting in both vertigo and hearing loss.

      The condition typically affects people between the ages of 40 and 70 and is characterized by an acute onset of symptoms, including vertigo, nausea and vomiting, hearing loss, and tinnitus. Patients may also experience gait disturbance and fall towards the affected side.

      Diagnosis is based on a patient’s history and examination, which may reveal spontaneous unidirectional horizontal nystagmus towards the unaffected side, sensorineural hearing loss, and an abnormal head impulse test.

      While episodes of labyrinthitis are usually self-limiting, medications like prochlorperazine or antihistamines may help reduce the sensation of dizziness. Understanding the symptoms and management of viral labyrinthitis can help patients seek appropriate treatment and manage their condition effectively.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 41 - A 10-year-old boy comes to the clinic with his mother. He complained of...

    Incorrect

    • A 10-year-old boy comes to the clinic with his mother. He complained of ear pain during the night, but there is no discharge, hearing loss, or other symptoms. Upon examination, he has no fever. The pinna of his ear appears red and swollen, and pressing on the tragus causes pain. Otoscopy reveals a healthy tympanic membrane, but the external auditory canal is inflamed. The external auditory canal consists of a cartilaginous outer part and a bony inner part. Which bone does the bony external canal pass through?

      Your Answer:

      Correct Answer: Temporal bone

      Explanation:

      The temporal bone is the correct answer. It contains the bony external auditory canal and middle ear, which are composed of a cartilaginous outer third and a bony inner two-thirds. The temporal bone articulates with the parietal, occipital, sphenoid, zygomatic, and mandible bones.

      The sphenoid bone is a complex bone that articulates with 12 other bones. It is divided into four parts: the body, greater wings, lesser wings, and pterygoid plates.

      The zygomatic bone is located on the anterior and lateral aspects of the face and articulates with the frontal, sphenoid, temporal, and maxilla bones.

      The parietal bone forms the sides and roof of the cranium and articulates with the parietal on the opposite side, as well as the frontal, temporal, occipital, and sphenoid bones.

      The occipital bone is situated at the rear of the cranium and articulates with the temporal, sphenoid, parietals, and the first cervical vertebrae.

      The patient’s symptoms of ear pain, erythematous pinna and external auditory canal, and tender tragus on palpation are consistent with otitis externa, which has numerous possible causes. The patient is not febrile and has no loss of hearing or dizziness.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 42 - Which of the following laryngeal tumors is unlikely to spread to the cervical...

    Incorrect

    • Which of the following laryngeal tumors is unlikely to spread to the cervical lymph nodes?

      Your Answer:

      Correct Answer: Glottic

      Explanation:

      The area of the vocal cords lacks lymphatic drainage, making it a lymphatic boundary. The upper portion above the vocal cords drains to the deep cervical nodes through vessels that penetrate the thyrohyoid membrane. The lower portion below the vocal cords drains to the pre-laryngeal, pre-tracheal, and inferior deep cervical nodes. The aryepiglottic and vestibular folds have a significant lymphatic drainage and are prone to early metastasis.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 43 - A 55-year-old man presents to his doctor with complaints of vertigo, which worsens...

    Incorrect

    • A 55-year-old man presents to his doctor with complaints of vertigo, which worsens when he rolls over in bed. The doctor diagnoses him with benign paroxysmal positional vertigo.

      What treatment options are available to alleviate the symptoms of this condition?

      Your Answer:

      Correct Answer: Epley manoeuvre

      Explanation:

      The Epley manoeuvre is a treatment for BPPV, while the Dix-Hallpike manoeuvre is used for diagnosis. The Epley manoeuvre aims to move fluid in the inner ear to dislodge otoliths, while the Dix-Hallpike manoeuvre involves observing the patient for nystagmus when swiftly lowered from a sitting to supine position. Tinel’s sign is positive in those with carpal tunnel syndrome, where tapping the median nerve over the flexor retinaculum causes paraesthesia. The Trendelenburg test is used to assess venous valve competency in patients with varicose veins.

      Benign paroxysmal positional vertigo (BPPV) is a common cause of vertigo that occurs suddenly when there is a change in head position. It is more prevalent in individuals over the age of 55 and is less common in younger patients. Symptoms of BPPV include dizziness and vertigo, which can be accompanied by nausea. Each episode typically lasts for 10-20 seconds and can be triggered by rolling over in bed or looking upwards. A positive Dix-Hallpike manoeuvre, which is indicated by vertigo and rotatory nystagmus, can confirm the diagnosis of BPPV.

      Fortunately, BPPV has a good prognosis and usually resolves on its own within a few weeks to months. Treatment options include the Epley manoeuvre, which is successful in around 80% of cases, and vestibular rehabilitation exercises such as the Brandt-Daroff exercises. While medication such as Betahistine may be prescribed, it tends to have limited effectiveness. However, it is important to note that around half of individuals with BPPV may experience a recurrence of symptoms 3-5 years after their initial diagnosis.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 44 - A 25-year-old man comes to the doctor complaining of frequent urination, unquenchable thirst,...

    Incorrect

    • A 25-year-old man comes to the doctor complaining of frequent urination, unquenchable thirst, and recent weight loss of around 5 kilograms in the last 2 months. The patient reports feeling extremely tired, although he acknowledges that work has been stressful lately, and his eating habits have been poor. The patient has a medical history of cystic fibrosis, with a Pseudomonas aeruginosa flare-up last year that required a brief hospital stay.

      What could be the probable reason for this patient's clinical presentation?

      Your Answer:

      Correct Answer: Diabetes mellitus

      Explanation:

      Cystic fibrosis can lead to the development of a unique type of diabetes mellitus known as cystic fibrosis-related diabetes mellitus. This is caused by the destruction of pancreatic islets due to abnormal chloride channel function, which leads to thickened bodily secretions that damage the exocrine pancreas over time. As a result, there is a gradual reduction in islet cell function and relative insulin deficiency, which can cause symptoms such as polydipsia, polyuria, fatigue, and weight loss.

      It is important to note that this type of diabetes is distinct from type 1 or type 2 diabetes. Additionally, it is not associated with other conditions such as diabetes insipidus, primary hyperparathyroidism, or prostatitis, which have their own unique symptoms and causes.

      Understanding Cystic Fibrosis: Symptoms and Other Features

      Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.

      Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 45 - A 72-year-old male has unfortunately been diagnosed with lung cancer after a brief...

    Incorrect

    • A 72-year-old male has unfortunately been diagnosed with lung cancer after a brief illness during which he visited his GP with a cough and loss of weight. The GP has received the histology report after a recent bronchoscopy, which revealed a squamous cell carcinoma. What symptoms would you anticipate in this patient based on the diagnosis?

      Your Answer:

      Correct Answer: Clubbing

      Explanation:

      Hypertrophic pulmonary osteoarthropathy (HPOA) is linked to squamous cell carcinoma, while small cell carcinoma of the lung is associated with excessive secretion of ADH and may also cause hypertension, hyperglycemia, and hypokalemia due to excessive ACTH secretion (although this is not typical). Lambert-Eaton syndrome is also linked to small cell carcinoma, while adenocarcinoma of the lung is associated with gynecomastia.

      Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 46 - A 24-year-old female arrives at the emergency department in a state of panic...

    Incorrect

    • A 24-year-old female arrives at the emergency department in a state of panic following a recent breakup with her partner. She complains of chest tightness and dizziness, fearing that she may be experiencing a heart attack. Upon examination, her vital signs are stable except for a respiratory rate of 34 breaths per minute. What compensatory mechanism is expected in response to the change in her oxyhaemoglobin dissociation curve, and what is the underlying cause?

      Your Answer:

      Correct Answer: Left shift, respiratory alkalosis

      Explanation:

      The patient’s oxygen dissociation curve has shifted to the left, indicating respiratory alkalosis. This is likely due to the patient experiencing a panic attack and hyperventilating, leading to a decrease in carbon dioxide levels and an increase in the affinity of haemoglobin for oxygen. Respiratory acidosis, hypercapnia, and a right shift of the curve are not appropriate explanations for this patient’s condition.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 47 - During a neck dissection, a nerve is observed to pass behind the medial...

    Incorrect

    • During a neck dissection, a nerve is observed to pass behind the medial aspect of the second rib. Which nerve from the list below is the most probable?

      Your Answer:

      Correct Answer: Phrenic nerve

      Explanation:

      The crucial aspect to note is that the phrenic nerve travels behind the inner side of the first rib. Towards the top, it is situated on the exterior of scalenus anterior.

      The Phrenic Nerve: Origin, Path, and Supplies

      The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.

      The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.

      Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 48 - A 16-year-old male presents to the emergency department with a 48-hour history of...

    Incorrect

    • A 16-year-old male presents to the emergency department with a 48-hour history of tachypnea and tachycardia. His blood glucose level is 18mmol/l. While breathing 40% oxygen, an arterial blood sample is taken. The results show a PaO2 of 22kPa, pH of 7.35, PaCO2 of 3.5kPa, and HCO3- of 18.6 mmol/l. How should these blood gas results be interpreted?

      Your Answer:

      Correct Answer: Metabolic acidosis with full respiratory compensation

      Explanation:

      The patient’s blood gas analysis shows a lower oxygen pressure by about 10kPa than the percentage of oxygen. The PaCo2 level is 3.5, indicating respiratory alkalosis or compensation for metabolic acidosis. The HCO3- level is 18.6, which suggests metabolic acidosis or metabolic compensation for respiratory alkalosis. These results indicate that the patient has metabolic acidosis with complete respiratory compensation. Additionally, the patient’s high blood glucose level suggests that the metabolic acidosis is due to diabetic ketoacidosis.

      Arterial Blood Gas Interpretation: A 5-Step Approach

      Arterial blood gas interpretation is a crucial aspect of patient care, particularly in critical care settings. The Resuscitation Council (UK) recommends a 5-step approach to interpreting arterial blood gas results. The first step is to assess the patient’s overall condition. The second step is to determine if the patient is hypoxaemic, with a PaO2 on air of less than 10 kPa. The third step is to assess if the patient is acidaemic (pH <7.35) or alkalaemic (pH >7.45).

      The fourth step is to evaluate the respiratory component of the arterial blood gas results. A PaCO2 level greater than 6.0 kPa suggests respiratory acidosis, while a PaCO2 level less than 4.7 kPa suggests respiratory alkalosis. The fifth step is to assess the metabolic component of the arterial blood gas results. A bicarbonate level less than 22 mmol/l or a base excess less than -2mmol/l suggests metabolic acidosis, while a bicarbonate level greater than 26 mmol/l or a base excess greater than +2mmol/l suggests metabolic alkalosis.

      To remember the relationship between pH, PaCO2, and bicarbonate, the acronym ROME can be used. Respiratory acidosis or alkalosis is opposite to the pH level, while metabolic acidosis or alkalosis is equal to the pH level. This 5-step approach and the ROME acronym can aid healthcare professionals in interpreting arterial blood gas results accurately and efficiently.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 49 - Sophie is a 15-year-old girl who has been brought to your GP clinic...

    Incorrect

    • Sophie is a 15-year-old girl who has been brought to your GP clinic by her father. She has not yet started to develop breasts or have her first period. She does not seem worried, but her father is concerned. Sophie has a history of eczema and has been using topical steroids for several years. When her father leaves the room, she also admits to occasionally using tanning beds.

      What could be a possible cause of delayed puberty in Sophie?

      Your Answer:

      Correct Answer: Cystic fibrosis

      Explanation:

      Delayed puberty can be caused by various factors, with constitutional delay being the most common cause. However, other causes must be ruled out before diagnosing constitutional delay. Some of these causes include chronic illnesses like kidney disease and Crohn’s disease, malnutrition from conditions such as anorexia nervosa, cystic fibrosis, and coeliac disease, excessive physical exercise, psychosocial deprivation, steroid therapy, hypothyroidism, tumours near the hypothalamo-pituitary axis, congenital anomalies like septo-optic dysplasia and congenital panhypopituitarism, irradiation treatment, and trauma such as surgery or head injury.

      Understanding Cystic Fibrosis: Symptoms and Other Features

      Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.

      Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 50 - A 45-year-old woman is undergoing consent for a thyroidectomy due to failed medical...

    Incorrect

    • A 45-year-old woman is undergoing consent for a thyroidectomy due to failed medical treatment for Grave's disease. Radioiodine was not an option as she is the sole caregiver for her three young children. During the consent process, she is informed of the potential complications of thyroidectomy, including the risk of injury to the sensory branch of the superior laryngeal nerve. Can you identify which nerve branches off from the superior laryngeal nerve and is responsible for sensory function?

      Your Answer:

      Correct Answer: Internal laryngeal nerve

      Explanation:

      The superior laryngeal nerve, a branch of the vagus nerve, has two branches: the external laryngeal nerve, which is a motor nerve, and the internal laryngeal nerve, which is a sensory nerve. The recurrent laryngeal nerve, also a branch of the vagus nerve, supplies all intrinsic muscles of the larynx except for the cricothyroid muscles.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 51 - A 48-year-old male presents for a preoperative evaluation for an inguinal hernia repair....

    Incorrect

    • A 48-year-old male presents for a preoperative evaluation for an inguinal hernia repair. During the assessment, you observe a loculated left pleural effusion on his chest x-ray. Upon further inquiry, the patient discloses that he worked as a builder three decades ago. What is the probable reason for the effusion?

      Your Answer:

      Correct Answer: Mesothelioma

      Explanation:

      Due to his profession as a builder, this individual is at risk of being exposed to asbestos. Given the 30-year latent period and the presence of a complex effusion, it is highly probable that the underlying cause is mesothelioma.

      Understanding Mesothelioma

      Mesothelioma is a type of cancer that affects the mesothelial layer of the pleural cavity, which is commonly linked to asbestos exposure. Although it is rare, other mesothelial layers in the abdomen may also be affected. Symptoms of mesothelioma include dyspnoea, weight loss, chest wall pain, and clubbing. In some cases, patients may present with painless pleural effusion. It is important to note that only 20% of patients have pre-existing asbestosis, but 85-90% have a history of asbestos exposure, with a latent period of 30-40 years.

      Diagnosis of mesothelioma is typically made through a chest x-ray, which may show pleural effusion or pleural thickening. A pleural CT is then performed to confirm the diagnosis. If a pleural effusion is present, fluid is sent for MC&S, biochemistry, and cytology. However, cytology is only helpful in 20-30% of cases. Local anaesthetic thoracoscopy is increasingly used to investigate cytology negative exudative effusions as it has a high diagnostic yield of around 95%. If an area of pleural nodularity is seen on CT, an image-guided pleural biopsy may be used.

      Management of mesothelioma is mainly symptomatic, with industrial compensation available for those who have been exposed to asbestos. Chemotherapy and surgery may be options for those who are operable. Unfortunately, the prognosis for mesothelioma is poor, with a median survival of only 12 months.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 52 - A father brings his 9-year-old daughter to your general practice, as he is...

    Incorrect

    • A father brings his 9-year-old daughter to your general practice, as he is worried about her hearing. He notices that he has to repeat himself when talking to her, and thinks she is often 'in her own little world'. During the examination, the Rinne test is positive on the left and negative on the right. What conclusions can be drawn from this?

      Your Answer:

      Correct Answer: Can not tell if both sides are affected.

      Explanation:

      The Rinne and Weber tests are used to diagnose hearing loss. The Rinne test involves comparing air and bone conduction, with a positive result indicating a healthy or sensorineural loss and a negative result indicating a conductive loss. The Weber test involves placing a tuning fork on the forehead and determining if the sound is symmetrical or louder on one side, with a conductive loss resulting in louder sound on the affected side and a sensorineural loss resulting in louder sound on the non-affected side. When used together, these tests can provide more information about the type and affected side of hearing loss.

      Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness

      Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.

      Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.

      The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.

      Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 53 - A premature baby is born and the anaesthetists are struggling to ventilate the...

    Incorrect

    • A premature baby is born and the anaesthetists are struggling to ventilate the lungs because of insufficient surfactant. How does Laplace's law explain the force pushing inwards on the walls of the alveolus caused by surface tension between two static fluids, such as air and water in the alveolus?

      Your Answer:

      Correct Answer: Inversely proportional to the radius of the alveolus

      Explanation:

      The Relationship between Alveolar Size and Surface Tension in Respiratory Physiology

      In respiratory physiology, the alveolus is often represented as a perfect sphere to apply Laplace’s law. According to this law, there is an inverse relationship between the size of the alveolus and the surface tension. This means that smaller alveoli experience greater force than larger alveoli for a given surface tension, and they will collapse first. This phenomenon explains why, when two balloons are attached together by their ends, the smaller balloon will empty into the bigger balloon.

      In the lungs, this same principle applies to lung units, causing atelectasis and collapse when surfactant is not present. Surfactant is a substance that reduces surface tension, making it easier to expand the alveoli and preventing smaller alveoli from collapsing. Therefore, surfactant plays a crucial role in maintaining the proper functioning of the lungs and preventing respiratory distress. the relationship between alveolar size and surface tension is essential in respiratory physiology and can help in the development of treatments for lung diseases.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 54 - A 50-year-old man with laryngeal cancer is undergoing a challenging laryngectomy. During the...

    Incorrect

    • A 50-year-old man with laryngeal cancer is undergoing a challenging laryngectomy. During the procedure, the surgeons cut the thyrocervical trunk. What vessel does this structure typically originate from?

      Your Answer:

      Correct Answer: Subclavian artery

      Explanation:

      The subclavian artery gives rise to the thyrocervical trunk, which emerges from the first part of the artery located between the inner border of scalenus anterior and the subclavian artery. The thyrocervical trunk branches off from the subclavian artery after the vertebral artery.

      Thoracic Outlet: Where the Subclavian Artery and Vein and Brachial Plexus Exit the Thorax

      The thoracic outlet is the area where the subclavian artery and vein and the brachial plexus exit the thorax and enter the arm. This passage occurs over the first rib and under the clavicle. The subclavian vein is the most anterior structure and is located immediately in front of scalenus anterior and its attachment to the first rib. Scalenus anterior has two parts, and the subclavian artery leaves the thorax by passing over the first rib and between these two portions of the muscle. At the level of the first rib, the lower cervical nerve roots combine to form the three trunks of the brachial plexus. The lowest trunk is formed by the union of C8 and T1, and this trunk lies directly posterior to the artery and is in contact with the superior surface of the first rib.

      Thoracic outlet obstruction can cause neurovascular compromise.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 55 - An 80-year-old man visits the GP clinic for a routine hearing examination. He...

    Incorrect

    • An 80-year-old man visits the GP clinic for a routine hearing examination. He reports a decline in hearing ability in his left ear for the past few months. After conducting Rinne and Weber tests, you determine that he has conductive hearing loss in the left ear. Upon otoscopy, you observe cerumen impaction.

      What are the test findings for this patient?

      Your Answer:

      Correct Answer: Rinne: bone conduction > air conduction in right ear; Weber: lateralising to right ear

      Explanation:

      Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness

      Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.

      Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.

      The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.

      Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 56 - A 23-year-old woman comes to your clinic complaining of difficulty hearing her partner...

    Incorrect

    • A 23-year-old woman comes to your clinic complaining of difficulty hearing her partner at home. She has been experiencing a high-pitched ringing in her left ear for the past 6 months. She attributes this to attending loud concerts frequently and has not sought medical attention until now. She reports that she can hear better when she is outside but struggles in quiet environments. Upon examination, there are no abnormalities seen during otoscopy. One of the possible diagnoses for this patient is otosclerosis, a condition that primarily affects the stapes bone. Which structure does the stapes bone come into contact with in the cochlea?

      Your Answer:

      Correct Answer: Oval window

      Explanation:

      The oval window is where the stapes connects with the cochlea, and it is the most inner of the ossicles. The stapes has a stirrup-like shape, with a head that articulates with the incus and two limbs that connect it to the base. The base of the stapes is in contact with the oval window, which is one of the only two openings between the middle and inner ear. The organ of Corti, which is responsible for hearing, is located on the basilar membrane within the cochlear duct. The round window is the other opening between the middle and inner ear, and it allows the fluid within the cochlea to move, transmitting sound to the hair cells. The helicotrema is the point where the scala tympani and scala vestibuli meet at the apex of the cochlear labyrinth. The tectorial membrane is a membrane that extends along the entire length of the cochlea. A female in her third decade of life with unilateral conductive hearing loss and a family history of hearing loss is likely to have otosclerosis, a condition that affects the stapes and can cause severe or total hearing loss due to abnormal bone growth and fusion with the cochlea.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 57 - A 70-year-old man is admitted to the respiratory ward with an exacerbation of...

    Incorrect

    • A 70-year-old man is admitted to the respiratory ward with an exacerbation of COPD. He has been experiencing increased breathlessness and a productive cough for the past week. He is currently on day three of his rescue medication regimen consisting of amoxicillin and prednisolone. According to his previous discharge summary, this patient has a history of carbon dioxide retention. He is currently receiving controlled oxygen therapy via a 28% venturi mask. What is the target oxygen saturation level for this patient?

      Your Answer:

      Correct Answer: 88%-92%

      Explanation:

      As a junior doctor, you will often encounter patients who retain carbon dioxide and depend on their hypoxic drive to breathe. When using Venturi masks to deliver controlled oxygen, it is important to set a target that balances the patient’s need for oxygen with their reliance on hypoxia to stimulate breathing. Answer 4 is the correct choice in this scenario. Providing too much oxygen, as in answers 2 and 3, can cause the patient to lose their hypoxic drive and become drowsy or confused. Answer 5 does not provide enough oxygen to properly perfuse the tissues. Failing to set a target for these patients is not good clinical practice.

      Guidelines for Oxygen Therapy in Emergency Situations

      In 2017, the British Thoracic Society updated its guidelines for emergency oxygen therapy. The guidelines state that in critically ill patients, such as those experiencing anaphylaxis or shock, oxygen should be administered through a reservoir mask at a rate of 15 liters per minute. However, certain conditions, such as stable myocardial infarction, are excluded from this recommendation.

      The guidelines also provide specific oxygen saturation targets for different patient populations. Acutely ill patients should have a saturation level between 94-98%, while patients at risk of hypercapnia, such as those with COPD, should have a saturation level between 88-92%. Oxygen levels should be reduced in stable patients with satisfactory oxygen saturation.

      For COPD patients, a 28% Venturi mask at 4 liters per minute should be used prior to the availability of blood gases. The target oxygen saturation level for these patients should be 88-92% if they have risk factors for hypercapnia but no prior history of respiratory acidosis. If the patient’s pCO2 is normal, the target range should be adjusted to 94-98%.

      The guidelines also state that oxygen therapy should not be used routinely in certain situations where there is no evidence of hypoxia, such as in cases of myocardial infarction, acute coronary syndromes, stroke, obstetric emergencies, and anxiety-related hyperventilation.

      Overall, these guidelines provide important recommendations for the appropriate use of oxygen therapy in emergency situations, taking into account the specific needs of different patient populations.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 58 - John, a 55-year-old man, arrives at the emergency department complaining of chest pain...

    Incorrect

    • John, a 55-year-old man, arrives at the emergency department complaining of chest pain that is relieved by leaning forward. He also mentions that the pain spreads to his left shoulder. The diagnosis is pericarditis.

      Which nerve is accountable for the referred pain in this case?

      Your Answer:

      Correct Answer: Phrenic nerve

      Explanation:

      The phrenic nerve provides motor innervation to the diaphragm and sensory innervation to the pleura and pericardium. Pericarditis can cause referred pain to the shoulder due to the supraclavicular nerves originating at C3-4. It is important to note that there are no pericardial nerves. The spinal accessory nerve innervates the trapezius and sternocleidomastoid muscles, while the trochlear nerve supplies the superior oblique muscle. Although the vagus nerve has various functions, it does not supply the pericardium.

      The Phrenic Nerve: Origin, Path, and Supplies

      The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.

      The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.

      Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 59 - Which one of the following does not cause a normal anion gap acidosis?...

    Incorrect

    • Which one of the following does not cause a normal anion gap acidosis?

      Your Answer:

      Correct Answer: Uraemia

      Explanation:

      Normal Gap Acidosis can be remembered using the acronym HARDUP, which stands for Hyperalimentation/hyperventilation, Acetazolamide, and R (which is currently blank).

      Disorders of Acid-Base Balance

      The acid-base nomogram is a useful tool for categorizing the various disorders of acid-base balance. Metabolic acidosis is the most common surgical acid-base disorder, characterized by a reduction in plasma bicarbonate levels. This can be caused by a gain of strong acid or loss of base, and is classified according to the anion gap. A normal anion gap indicates hyperchloraemic metabolic acidosis, which can be caused by gastrointestinal bicarbonate loss, renal tubular acidosis, drugs, or Addison’s disease. A raised anion gap indicates lactate, ketones, urate, or acid poisoning. Metabolic alkalosis, on the other hand, is usually caused by a rise in plasma bicarbonate levels due to a loss of hydrogen ions or a gain of bicarbonate. It is mainly caused by problems of the kidney or gastrointestinal tract. Respiratory acidosis is characterized by a rise in carbon dioxide levels due to alveolar hypoventilation, while respiratory alkalosis is caused by hyperventilation resulting in excess loss of carbon dioxide. These disorders have various causes, such as COPD, sedative drugs, anxiety, hypoxia, and pregnancy.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 60 - A 59-year-old woman visits the respiratory clinic for spirometry testing. As part of...

    Incorrect

    • A 59-year-old woman visits the respiratory clinic for spirometry testing. As part of the testing, what is the definition of functional residual capacity?

      Your Answer:

      Correct Answer: Functional residual capacity = expiratory reserve volume + residual volume

      Explanation:

      To calculate the volume of air in the lungs after a normal relaxed expiration, one can use the formula for functional residual capacity (FRC), which is determined by the balance between the lungs’ tendency to recoil inwards and the chest wall’s tendency to pull outwards. FRC can be calculated by adding the expiratory reserve volume and the residual volume. In individuals with tetraplegia, decreases in FRC are primarily caused by a reduction in the outward pull of the chest wall, which occurs over time due to the inability to regularly expand the chest wall to large lung volumes. This reduction in FRC can increase the risk of atelectasis.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 61 - A 65-year-old man with a 45-pack-year history arrives at the hospital complaining of...

    Incorrect

    • A 65-year-old man with a 45-pack-year history arrives at the hospital complaining of increased difficulty breathing and cachexia. Upon examination, a chest X-ray reveals an elevated left hemidiaphragm, enlarged hilar lymph nodes, and a significant opacification. Which structure is most likely to have been affected?

      Your Answer:

      Correct Answer: Left phrenic nerve

      Explanation:

      It is unlikely that direct injury would result in the elevation of the left hemidiaphragm, especially since there is no history of trauma or surgery. However, damage to the long thoracic nerve could cause winging of the scapula due to weakened serratus anterior muscle. On the other hand, injury to the thoracodorsal nerve, which innervates the latissimus dorsi muscle, can lead to weakened shoulder adduction and is a common complication of axillary surgery.

      The Phrenic Nerve: Origin, Path, and Supplies

      The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.

      The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.

      Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 62 - A 25-year-old patient is undergoing routine pulmonary function testing to assess her chronic...

    Incorrect

    • A 25-year-old patient is undergoing routine pulmonary function testing to assess her chronic condition. The results are compared to a standardised predicted value and presented in the table below:

      FEV1 75% of predicted
      FVC 70% of predicted
      FEV1/FVC 105%

      What is the probable condition that this patient is suffering from, which can account for the above findings?

      Your Answer:

      Correct Answer: Neuromuscular disorder

      Explanation:

      The patient’s pulmonary function tests indicate a restrictive pattern, as both FEV1 and FVC are reduced. This suggests a possible neuromuscular disorder, as all other options would result in an obstructive pattern on the tests. Asthma, bronchiectasis, and COPD are unlikely diagnoses for a 20-year-old and would not match the test results. Pneumonia may affect the patient’s ability to perform the tests, but it is typically an acute condition that requires immediate treatment with antibiotics.

      Understanding Pulmonary Function Tests

      Pulmonary function tests are a useful tool in determining whether a respiratory disease is obstructive or restrictive. These tests measure various aspects of lung function, such as forced expiratory volume in one second (FEV1) and forced vital capacity (FVC). By analyzing the results of these tests, doctors can diagnose and monitor conditions such as asthma, COPD, pulmonary fibrosis, and neuromuscular disorders.

      In obstructive lung diseases, such as asthma and COPD, the FEV1 is significantly reduced, while the FVC may be reduced or normal. The FEV1% (FEV1/FVC) is also reduced. On the other hand, in restrictive lung diseases, such as pulmonary fibrosis and asbestosis, the FEV1 is reduced, but the FVC is significantly reduced. The FEV1% (FEV1/FVC) may be normal or increased.

      It is important to note that there are many conditions that can affect lung function, and pulmonary function tests are just one tool in diagnosing and managing respiratory diseases. However, understanding the results of these tests can provide valuable information for both patients and healthcare providers.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 63 - A 26-year-old woman comes to your clinic complaining of feeling dizzy for the...

    Incorrect

    • A 26-year-old woman comes to your clinic complaining of feeling dizzy for the past two days. She describes a sensation of the room spinning and has been experiencing nausea. The dizziness is relieved when she lies down and has no apparent triggers. She denies any hearing loss or aural fullness and is otherwise healthy. Upon examination, she has no fever and otoscopy reveals no abnormalities. You suspect she may have viral labyrinthitis and prescribe prochlorperazine to alleviate her vertigo symptoms. What class of antiemetic does prochlorperazine belong to?

      Your Answer:

      Correct Answer: Dopamine receptor antagonist

      Explanation:

      Prochlorperazine belongs to a class of drugs known as dopamine receptor antagonists, which work by inhibiting stimulation of the chemoreceptor trigger zone (CTZ) through D2 receptors. Other drugs in this class include domperidone, metoclopramide, and olanzapine.

      Antihistamine antiemetics, such as cyclizine and promethazine, are H1 histamine receptor antagonists.

      5-HT3 receptor antagonists, such as ondansetron and granisetron, are effective both centrally and peripherally. They work by blocking serotonin receptors in the central nervous system and gastrointestinal tract.

      Antimuscarinic antiemetics are anticholinergic drugs, with hyoscine (scopolamine) being a common example.

      Vertigo is a condition characterized by a false sensation of movement in the body or environment. There are various causes of vertigo, each with its own unique characteristics. Viral labyrinthitis, for example, is typically associated with a recent viral infection, sudden onset, nausea and vomiting, and possible hearing loss. Vestibular neuronitis, on the other hand, is characterized by recurrent vertigo attacks lasting hours or days, but with no hearing loss. Benign paroxysmal positional vertigo is triggered by changes in head position and lasts for only a few seconds. Meniere’s disease, meanwhile, is associated with hearing loss, tinnitus, and a feeling of fullness or pressure in the ears. Elderly patients with vertigo may be experiencing vertebrobasilar ischaemia, which is accompanied by dizziness upon neck extension. Acoustic neuroma, which is associated with hearing loss, vertigo, and tinnitus, is also a possible cause of vertigo. Other causes include posterior circulation stroke, trauma, multiple sclerosis, and ototoxicity from medications like gentamicin.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 64 - Which one of the following is not found in the anterior mediastinum? ...

    Incorrect

    • Which one of the following is not found in the anterior mediastinum?

      Your Answer:

      Correct Answer: Thoracic duct

      Explanation:

      The posterior and superior mediastinum contain the thoracic duct.

      The mediastinum is the area located between the two pulmonary cavities and is covered by the mediastinal pleura. It extends from the thoracic inlet at the top to the diaphragm at the bottom. The mediastinum is divided into four regions: the superior mediastinum, middle mediastinum, posterior mediastinum, and anterior mediastinum.

      The superior mediastinum is the area between the manubriosternal angle and T4/5. It contains important structures such as the superior vena cava, brachiocephalic veins, arch of aorta, thoracic duct, trachea, oesophagus, thymus, vagus nerve, left recurrent laryngeal nerve, and phrenic nerve. The anterior mediastinum contains thymic remnants, lymph nodes, and fat. The middle mediastinum contains the pericardium, heart, aortic root, arch of azygos vein, and main bronchi. The posterior mediastinum contains the oesophagus, thoracic aorta, azygos vein, thoracic duct, vagus nerve, sympathetic nerve trunks, and splanchnic nerves.

      In summary, the mediastinum is a crucial area in the thorax that contains many important structures and is divided into four regions. Each region contains different structures that are essential for the proper functioning of the body.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 65 - A 65-year-old male with a history of chronic obstructive pulmonary disease (COPD) has...

    Incorrect

    • A 65-year-old male with a history of chronic obstructive pulmonary disease (COPD) has been admitted and treated for infective exacerbations of COPD three times in the past year. Despite his respiratory issues, he continues to smoke. He is currently receiving only short-acting beta2-agonist therapy. During his COPD patient review with the nurse practitioner at his local general practice, spirometry results reveal a drop in his FEV1 from 65% to 58%.

      What is the most effective approach to manage his condition and prevent further decline in his FEV1?

      Your Answer:

      Correct Answer: Smoking cessation

      Explanation:

      The most effective intervention to slow the decrease in FEV1 experienced by patients with COPD is to stop smoking. If the patient has no asthmatic/steroid-responsive features, the next step in management would be to add a long-acting beta2-agonist (LABA) and a long-acting muscarinic antagonist. If the patient has asthmatic/steroid-responsive features, the next step would be to add a LABA and an inhaled corticosteroid. Oral theophylline is only considered if inhaled therapy is not possible, and oral prednisolone is only used during acute infective exacerbations of COPD to help with inflammation and is not a long-term solution to slow the reduction of FEV1.

      The National Institute for Health and Care Excellence (NICE) updated its guidelines on the management of chronic obstructive pulmonary disease (COPD) in 2018. The guidelines recommend general management strategies such as smoking cessation advice, annual influenzae vaccination, and one-off pneumococcal vaccination. Pulmonary rehabilitation is also recommended for patients who view themselves as functionally disabled by COPD.

      Bronchodilator therapy is the first-line treatment for patients who remain breathless or have exacerbations despite using short-acting bronchodilators. The next step is determined by whether the patient has asthmatic features or features suggesting steroid responsiveness. NICE suggests several criteria to determine this, including a previous diagnosis of asthma or atopy, a higher blood eosinophil count, substantial variation in FEV1 over time, and substantial diurnal variation in peak expiratory flow.

      If the patient does not have asthmatic features or features suggesting steroid responsiveness, a long-acting beta2-agonist (LABA) and long-acting muscarinic antagonist (LAMA) should be added. If the patient is already taking a short-acting muscarinic antagonist (SAMA), it should be discontinued and switched to a short-acting beta2-agonist (SABA). If the patient has asthmatic features or features suggesting steroid responsiveness, a LABA and inhaled corticosteroid (ICS) should be added. If the patient remains breathless or has exacerbations, triple therapy (LAMA + LABA + ICS) should be offered.

      NICE only recommends theophylline after trials of short and long-acting bronchodilators or to people who cannot use inhaled therapy. Azithromycin prophylaxis is recommended in select patients who have optimised standard treatments and continue to have exacerbations. Mucolytics should be considered in patients with a chronic productive cough and continued if symptoms improve.

      Cor pulmonale features include peripheral oedema, raised jugular venous pressure, systolic parasternal heave, and loud P2. Loop diuretics should be used for oedema, and long-term oxygen therapy should be considered. Smoking cessation, long-term oxygen therapy in eligible patients, and lung volume reduction surgery in selected patients may improve survival in patients with stable COPD. NICE does not recommend the use of ACE-inhibitors, calcium channel blockers, or alpha blockers

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 66 - A 29-year-old male is injured by a gunshot to his right chest resulting...

    Incorrect

    • A 29-year-old male is injured by a gunshot to his right chest resulting in a right haemothorax that requires a thoracotomy. During the procedure, the surgeons opt to use a vascular clamp to secure the hilum of the right lung. What structure will be positioned most anteriorly at this location?

      Your Answer:

      Correct Answer: Phrenic nerve

      Explanation:

      At the base of the right lung, the phrenic nerve is located in the anterior position.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 67 - A 67-year-old woman presents to the clinic with a gradual onset of dyspnea...

    Incorrect

    • A 67-year-old woman presents to the clinic with a gradual onset of dyspnea on exertion over the past 6 months. She has a medical history of severe COPD and is currently receiving long-term oxygen therapy. During the examination, you observe pitting edema up to the mid-thighs, an elevated JVP with a prominent V wave, a precordial heave, and a loud P2. What is the most probable mechanism involved in this diagnosis?

      Your Answer:

      Correct Answer: Pulmonary arteries vasoconstriction due to hypoxia

      Explanation:

      Hypoxia causes vasoconstriction of pulmonary arteries, leading to a diagnosis of right heart failure secondary to hypoxic lung disease, also known as cor pulmonale.

      The Effects of Hypoxia on Pulmonary Arteries

      When the partial pressure of oxygen in the blood decreases, the pulmonary arteries undergo vasoconstriction. This means that the blood vessels narrow, allowing blood to be redirected to areas of the lung that are better aerated. This response is a natural mechanism that helps to improve the efficiency of gaseous exchange in the lungs. By diverting blood to areas with more oxygen, the body can ensure that the tissues receive the oxygen they need to function properly. Overall, hypoxia triggers a physiological response that helps to maintain homeostasis in the body.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 68 - Which one of the following statements relating to the root of the spine...

    Incorrect

    • Which one of the following statements relating to the root of the spine is false?

      Your Answer:

      Correct Answer: The subclavian artery arches over the first rib anterior to scalenus anterior

      Explanation:

      The suprapleural membrane, also known as Sibson’s fascia, is located above the pleural cavity. The scalenus anterior muscle is positioned in front of the subclavian vein, while the subclavian artery is situated behind it.

      Thoracic Outlet: Where the Subclavian Artery and Vein and Brachial Plexus Exit the Thorax

      The thoracic outlet is the area where the subclavian artery and vein and the brachial plexus exit the thorax and enter the arm. This passage occurs over the first rib and under the clavicle. The subclavian vein is the most anterior structure and is located immediately in front of scalenus anterior and its attachment to the first rib. Scalenus anterior has two parts, and the subclavian artery leaves the thorax by passing over the first rib and between these two portions of the muscle. At the level of the first rib, the lower cervical nerve roots combine to form the three trunks of the brachial plexus. The lowest trunk is formed by the union of C8 and T1, and this trunk lies directly posterior to the artery and is in contact with the superior surface of the first rib.

      Thoracic outlet obstruction can cause neurovascular compromise.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 69 - A seven-year-old boy who was born in Germany presents to paediatrics with a...

    Incorrect

    • A seven-year-old boy who was born in Germany presents to paediatrics with a history of recurrent chest infections, steatorrhoea, and poor growth. He has a significant medical history of meconium ileus. Following a thorough evaluation, the suspected diagnosis is confirmed through a chloride sweat test. The paediatrician informs the parents that their son will have an elevated risk of infertility in adulthood. What is the pathophysiological basis for the increased risk of infertility in this case?

      Your Answer:

      Correct Answer: Absent vas deferens

      Explanation:

      Men with cystic fibrosis are at risk of infertility due to the absence of vas deferens. Unfortunately, this condition often goes undetected in infancy as Germany does not perform neonatal testing for it. Hypogonadism, which can cause infertility, is typically caused by genetic factors like Kallmann syndrome, but not cystic fibrosis. Retrograde ejaculation is most commonly associated with complicated urological surgery, while an increased risk of testicular cancer can be caused by factors like cryptorchidism. However, cystic fibrosis is also a risk factor for testicular cancer.

      Understanding Cystic Fibrosis: Symptoms and Other Features

      Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.

      Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 70 - A 20-year-old male arrives at the emergency department with a sudden worsening of...

    Incorrect

    • A 20-year-old male arrives at the emergency department with a sudden worsening of his asthma symptoms. He is experiencing difficulty in speaking and breathing, with cyanosis of the lips and a respiratory rate of 33 breaths per minute. He reports feeling lightheaded. Although his airways are open, his chest sounds are faint upon auscultation. The patient is administered oxygen, nebulized salbutamol, and intravenous aminophylline.

      What is the mechanism of action of aminophylline?

      Your Answer:

      Correct Answer: Binds to adenosine receptors and blocks adenosine-mediated bronchoconstriction

      Explanation:

      Aminophylline works by binding to adenosine receptors and preventing adenosine-induced bronchoconstriction. This mode of action is different from antihistamines like loratadine, which is an incorrect option. Theophylline, a shorter acting form of aminophylline, competitively inhibits type III and type IV phosphodiesterase enzymes responsible for breaking down cyclic AMP in smooth muscle cells, leading to possible bronchodilation. Additionally, theophylline binds to the adenosine A2B receptor and blocks adenosine-mediated bronchoconstriction. In inflammatory conditions, theophylline activates histone deacetylase, which prevents the transcription of inflammatory genes that require histone acetylation for transcription to begin. Therefore, the last three options are incorrect. (Source: Drugbank)

      Aminophylline infusions are utilized to manage acute asthma and COPD. In patients who have not received xanthines (theophylline or aminophylline) before, a loading dose of 5 mg/kg is administered through a slow intravenous injection lasting at least 20 minutes. For the maintenance infusion, 1g of aminophylline is mixed with 1 litre of normal saline to create a solution of 1 mg/ml. The recommended dose is 500-700 mcg/kg/hour, or 300 mcg/kg/hour for elderly patients. It is important to monitor plasma theophylline concentrations.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 71 - A 20-year-old woman comes to your general practice complaining of hearing difficulties for...

    Incorrect

    • A 20-year-old woman comes to your general practice complaining of hearing difficulties for the past month. She was previously diagnosed with tinnitus by one of your colleagues at the practice 11 months ago. The patient reports that she can hear better when outside but struggles in quiet environments. Upon otoscopy, no abnormalities are found. Otosclerosis is one of the differential diagnoses for this patient, which primarily affects the ossicle that connects to the cochlea. What is the name of the ossicle that attaches to the cochlea at the oval window?

      Your Answer:

      Correct Answer: Stapes

      Explanation:

      The stapes bone is the correct answer.

      The ossicles are three bones located in the middle ear. They are arranged from lateral to medial and include the malleus, incus, and stapes. The malleus is the most lateral bone and its handle and lateral process attach to the tympanic membrane, making it visible on otoscopy. The head of the malleus articulates with the incus. The stapes bone is the most medial of the ossicles and is also known as the stirrup.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 72 - A 67-year-old man visits his doctor complaining of dyspnoea. He experiences shortness of...

    Incorrect

    • A 67-year-old man visits his doctor complaining of dyspnoea. He experiences shortness of breath after walking just a few meters, whereas he can usually walk up to 200m. The man appears cyanosed in his extremities and his pulse oximeter shows a reading of 83%. What is the primary mode of carbon dioxide transportation in the bloodstream?

      Your Answer:

      Correct Answer: Bound to haemoglobin as bicarbonate ions

      Explanation:

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 73 - A 35-year-old female smoker presents with acute severe asthma.

    The patient's SaO2 levels...

    Incorrect

    • A 35-year-old female smoker presents with acute severe asthma.

      The patient's SaO2 levels are at 91% even with 15 L of oxygen, and her pO2 is at 8.2 kPa (10.5-13). There is widespread expiratory wheezing throughout her chest.

      The medical team administers IV hydrocortisone, 100% oxygen, and 5 mg of nebulised salbutamol and 500 micrograms of nebulised ipratropium, but there is little response. Nebulisers are repeated 'back-to-back,' but the patient remains tachypnoeic with wheezing, although there is good air entry.

      What should be the next step in the patient's management?

      Your Answer:

      Correct Answer: IV Magnesium

      Explanation:

      Acute Treatment of Asthma

      When dealing with acute asthma, the initial approach should be SOS, which stands for Salbutamol, Oxygen, and Steroids (IV). It is also important to organize a CXR to rule out pneumothorax. If the patient is experiencing bronchoconstriction, further efforts to treat it should be considered. If the patient is tiring or has a silent chest, ITU review may be necessary. Magnesium is recommended at a dose of 2 g over 30 minutes to promote bronchodilation, as low magnesium levels in bronchial smooth muscle can favor bronchoconstriction. IV theophylline may also be considered, but magnesium is typically preferred. While IV antibiotics may be necessary, promoting bronchodilation should be the initial focus. IV potassium may also be required as beta agonists can push down potassium levels. Oral prednisolone can wait, as IV hydrocortisone is already part of the SOS approach. Non-invasive ventilation is not recommended for the acute management of asthma.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 74 - A 19-year-old male is admitted with acute asthma. He has been treated with...

    Incorrect

    • A 19-year-old male is admitted with acute asthma. He has been treated with steroid, bronchodilators and 15 l/min of oxygen.

      His pulse rate is 125/min, oxygen saturation 89%, respiratory rate 24/min, blood pressure 140/88 mmHg and he has a peak flow rate of 150 l/min. On auscultation of his chest, he has bilateral wheezes.

      Arterial blood gas (ABG) result taken on 15 l/min oxygen shows:

      pH 7.42 (7.36-7.44)
      PaO2 8.4 kPa (11.3-12.6)
      PaCO2 5.3 kPa (4.7-6.0)
      Standard HCO3 19 mmol/L (20-28)
      Base excess −4 (+/-2)
      Oxygen saturation 89%

      What is the most appropriate action for this man?

      Your Answer:

      Correct Answer: Call ITU to consider intubation

      Explanation:

      Urgent Need for Ventilation in Life-Threatening Asthma

      This patient is experiencing life-threatening asthma with a dangerously low oxygen saturation level of less than 92%. Despite having a normal PaCO2 level, the degree of hypoxia is inappropriate and requires immediate consideration for ventilation. The arterial blood gas (ABG) result is consistent with the clinical presentation, making a venous blood sample unnecessary. Additionally, the ABG and bedside oxygen saturation readings are identical, indicating an arterialised sample.

      It is crucial to note that in cases of acute asthma, reducing the amount of oxygen below the maximum available is not recommended. Hypoxia can be fatal and must be addressed promptly. Therefore, urgent intervention is necessary to ensure the patient’s safety and well-being.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 75 - A 75-year-old man visits his doctor complaining of a productive cough that has...

    Incorrect

    • A 75-year-old man visits his doctor complaining of a productive cough that has lasted for 5 days. He has also been feeling generally unwell and has had a fever for the past 2 days. The doctor suspects a bacterial respiratory tract infection and orders a blood panel, sputum microscopy, and culture. What is the most likely abnormality to be found in the blood results?

      Your Answer:

      Correct Answer: Neutrophils

      Explanation:

      Neutrophils are typically elevated during an acute bacterial infection, while eosinophils are commonly elevated in response to parasitic infections and allergies. Lymphocytes tend to increase during acute viral infections and chronic inflammation. IgE levels are raised in cases of allergic asthma, malaria, and type 1 hypersensitivity reactions. Anti-CCP antibody is a diagnostic tool for Rheumatoid arthritis.

      Pneumonia is a common condition that affects the alveoli of the lungs, usually caused by a bacterial infection. Other causes include viral and fungal infections. Streptococcus pneumoniae is the most common organism responsible for pneumonia, accounting for 80% of cases. Haemophilus influenzae is common in patients with COPD, while Staphylococcus aureus often occurs in patients following influenzae infection. Mycoplasma pneumoniae and Legionella pneumophilia are atypical pneumonias that present with dry cough and other atypical symptoms. Pneumocystis jiroveci is typically seen in patients with HIV. Idiopathic interstitial pneumonia is a group of non-infective causes of pneumonia.

      Patients who develop pneumonia outside of the hospital have community-acquired pneumonia (CAP), while those who develop it within hospitals are said to have hospital-acquired pneumonia. Symptoms of pneumonia include cough, sputum, dyspnoea, chest pain, and fever. Signs of systemic inflammatory response, tachycardia, reduced oxygen saturations, and reduced breath sounds may also be present. Chest x-ray is used to diagnose pneumonia, with consolidation being the classical finding. Blood tests, such as full blood count, urea and electrolytes, and CRP, are also used to check for infection.

      Patients with pneumonia require antibiotics to treat the underlying infection and supportive care, such as oxygen therapy and intravenous fluids. Risk stratification is done using a scoring system called CURB-65, which stands for confusion, respiration rate, blood pressure, age, and is used to determine the management of patients with community-acquired pneumonia. Home-based care is recommended for patients with a CRB65 score of 0, while hospital assessment is recommended for all other patients, particularly those with a CRB65 score of 2 or more. The CURB-65 score also correlates with an increased risk of mortality at 30 days.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 76 - A 65-year-old man with uncontrolled diabetes complains of severe otalgia and headaches. During...

    Incorrect

    • A 65-year-old man with uncontrolled diabetes complains of severe otalgia and headaches. During examination, granulation tissue is observed in the external auditory meatus. What is the probable causative agent of the infection?

      Your Answer:

      Correct Answer: Pseudomonas aeruginosa

      Explanation:

      The primary cause of malignant otitis externa is typically Pseudomonas aeruginosa. Symptoms of this condition include intense pain, headaches, and the presence of granulation tissue in the external auditory meatus. Individuals with diabetes mellitus are at a higher risk for developing this condition.

      Malignant Otitis Externa: A Rare but Serious Infection

      Malignant otitis externa is a type of ear infection that is uncommon but can be serious. It is typically found in individuals who are immunocompromised, with 90% of cases occurring in diabetics. The infection starts in the soft tissues of the external auditory meatus and can progress to involve the soft tissues and bony ear canal, eventually leading to temporal bone osteomyelitis.

      Key features in the patient’s history include diabetes or immunosuppression, severe and persistent ear pain, temporal headaches, and purulent otorrhea. In some cases, patients may also experience dysphagia, hoarseness, and facial nerve dysfunction.

      Diagnosis is typically done through a CT scan, and non-resolving otitis externa with worsening pain should be referred urgently to an ENT specialist. Treatment involves intravenous antibiotics that cover pseudomonal infections.

      In summary, malignant otitis externa is a rare but serious infection that requires prompt diagnosis and treatment. Patients with diabetes or immunosuppression should be particularly vigilant for symptoms and seek medical attention if they experience persistent ear pain or other related symptoms.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 77 - A 50-year-old female presents to her GP with complaints of shortness of breath...

    Incorrect

    • A 50-year-old female presents to her GP with complaints of shortness of breath and weakness during mild-moderate exercise. She reports that these episodes have been getting progressively worse and now often result in dizziness. The patient has no significant medical history but was a previous smoker for 15 years, smoking 15 cigarettes per day. Spirometry testing reveals a restrictive lung pattern. What is the most probable diagnosis?

      Your Answer:

      Correct Answer: Myasthenia gravis

      Explanation:

      Myasthenia gravis can result in a restrictive pattern of lung disease due to weakness of the respiratory muscles, which causes difficulty in breathing air in. Asthma and COPD are incorrect as they cause an obstructive pattern on spirometry, with asthma being characterized by small bronchiole obstruction from inflammation and increased mucus production, and COPD causing small airway inflammation and emphysema that restricts outward airflow. Alpha-1 antitrypsin deficiency also leads to an obstructive pattern, as it results in pulmonary tissue degradation and panlobular emphysema.

      Understanding the Differences between Obstructive and Restrictive Lung Diseases

      Obstructive and restrictive lung diseases are two distinct categories of respiratory conditions that affect the lungs in different ways. Obstructive lung diseases are characterized by a reduction in the flow of air through the airways due to narrowing or blockage, while restrictive lung diseases are characterized by a decrease in lung volume or capacity, making it difficult to breathe in enough air.

      Spirometry is a common diagnostic tool used to differentiate between obstructive and restrictive lung diseases. In obstructive lung diseases, the ratio of forced expiratory volume in one second (FEV1) to forced vital capacity (FVC) is less than 80%, indicating a reduced ability to exhale air. In contrast, restrictive lung diseases are characterized by an FEV1/FVC ratio greater than 80%, indicating a reduced ability to inhale air.

      Examples of obstructive lung diseases include chronic obstructive pulmonary disease (COPD), chronic bronchitis, and emphysema, while asthma and bronchiectasis are also considered obstructive. Restrictive lung diseases include intrapulmonary conditions such as idiopathic pulmonary fibrosis, extrinsic allergic alveolitis, and drug-induced fibrosis, as well as extrapulmonary conditions such as neuromuscular diseases, obesity, and scoliosis.

      Understanding the differences between obstructive and restrictive lung diseases is important for accurate diagnosis and appropriate treatment. While both types of conditions can cause difficulty breathing, the underlying causes and treatment approaches can vary significantly.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 78 - The pressure within the pleural space is positive with respect to atmospheric pressure,...

    Incorrect

    • The pressure within the pleural space is positive with respect to atmospheric pressure, in which of the following scenarios?

      Your Answer:

      Correct Answer: During a Valsalva manoeuvre

      Explanation:

      Extrinsic compression causes an increase in intrapleural pressure during a Valsalva manoeuvre.

      Understanding Pleural Pressure

      Pleural pressure refers to the pressure surrounding the lungs within the pleural space. The pleura is a thin membrane that invests the lungs and lines the walls of the thoracic cavity. The visceral pleura covers the lung, while the parietal pleura covers the chest wall. The two sides are continuous and meet at the hilum of the lung. The size of the lung is determined by the difference between the alveolar pressure and the pleural pressure, or the transpulmonary pressure.

      During quiet breathing, the pleural pressure is negative, meaning it is below atmospheric pressure. However, during active expiration, the abdominal muscles contract to force up the diaphragm, resulting in positive pleural pressure. This may temporarily collapse the bronchi and cause limitation of air flow.

      Gravity affects pleural pressure, with the pleural pressure at the base of the lung being greater (less negative) than at its apex in an upright individual. When lying on the back, the pleural pressure becomes greatest along the back. Alveolar pressure is uniform throughout the lung, so the top of the lung generally experiences a greater transpulmonary pressure and is therefore more expanded and less compliant than the bottom of the lung.

      In summary, understanding pleural pressure is important in understanding lung function and how it is affected by various factors such as gravity and muscle contraction.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 79 - A 10-year-old girl has been diagnosed with asthma. Her father asks you about...

    Incorrect

    • A 10-year-old girl has been diagnosed with asthma. Her father asks you about the cause of her symptoms. What is the best response?

      Inflammation of the lining of the bronchioles causes obstruction of the flow of air out from the lungs. This inflammation is reversible so symptoms of asthma may be intermittent. There may also be increased mucus production and bronchial muscle constriction.

      Your Answer:

      Correct Answer: Reversible inflammation of the lining of the small airways causing them to become narrower

      Explanation:

      The bronchioles’ lining inflammation obstructs the outflow of air from the lungs, leading to asthma symptoms that may come and go. Additionally, there could be heightened mucus production and constriction of bronchial muscles.

      Asthma is a common respiratory disorder that affects both children and adults. It is characterized by chronic inflammation of the airways, resulting in reversible bronchospasm and airway obstruction. While asthma can develop at any age, it typically presents in childhood and may improve or resolve with age. However, it can also persist into adulthood and cause significant morbidity, with around 1,000 deaths per year in the UK.

      Several risk factors can increase the likelihood of developing asthma, including a personal or family history of atopy, antenatal factors such as maternal smoking or viral infections, low birth weight, not being breastfed, exposure to allergens and air pollution, and the hygiene hypothesis. Patients with asthma may also suffer from other atopic conditions such as eczema and hay fever, and some may be sensitive to aspirin. Occupational asthma is also a concern for those exposed to allergens in the workplace.

      Symptoms of asthma include coughing, dyspnea, wheezing, and chest tightness, with coughing often worse at night. Signs may include expiratory wheezing on auscultation and reduced peak expiratory flow rate. Diagnosis is typically made through spirometry, which measures the volume and speed of air during exhalation and inhalation.

      Management of asthma typically involves the use of inhalers to deliver drug therapy directly to the airways. Short-acting beta-agonists such as salbutamol are the first-line treatment for relieving symptoms, while inhaled corticosteroids like beclometasone dipropionate and fluticasone propionate are used for daily maintenance therapy. Long-acting beta-agonists like salmeterol and leukotriene receptor antagonists like montelukast may also be used in combination with other medications. Maintenance and reliever therapy (MART) is a newer approach that combines ICS and a fast-acting LABA in a single inhaler for both daily maintenance and symptom relief. Recent guidelines recommend offering a leukotriene receptor antagonist instead of a LABA for patients on SABA + ICS whose asthma is not well controlled, and considering MART for those with poorly controlled asthma.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 80 - A 63-year-old man arrives at the ER with a recent onset of left-sided...

    Incorrect

    • A 63-year-old man arrives at the ER with a recent onset of left-sided facial paralysis. He reports experiencing a painful rash around his ear on the affected side for the past five days. Your suspicion is Ramsay Hunt syndrome. What virus is responsible for this condition?

      Your Answer:

      Correct Answer: Varicella zoster virus

      Explanation:

      The geniculate ganglion of the facial nerve (CN VII) reactivates the varicella-zoster virus, causing Ramsay Hunt syndrome.

      Infectious mononucleosis (glandular fever) is primarily linked to the Epstein-Barr virus.

      Viral warts are commonly caused by human papillomavirus (HPV), with certain types being associated with gynaecological malignancy. Vaccines are now available to protect against the carcinogenic strains of HPV.

      Oral or genital herpes infections are caused by the herpes simplex virus.

      Understanding Ramsay Hunt Syndrome

      Ramsay Hunt syndrome, also known as herpes zoster oticus, is a condition that occurs when the varicella zoster virus reactivates in the geniculate ganglion of the seventh cranial nerve. The first symptom of this syndrome is often auricular pain, followed by facial nerve palsy and a vesicular rash around the ear. Other symptoms may include vertigo and tinnitus.

      To manage Ramsay Hunt syndrome, doctors typically prescribe oral acyclovir and corticosteroids. These medications can help reduce the severity of symptoms and prevent complications.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 81 - Control of ventilation. Which statement is false? ...

    Incorrect

    • Control of ventilation. Which statement is false?

      Your Answer:

      Correct Answer: Central chemoreceptors respond to changes in O2

      Explanation:

      The central chemoreceptors increase ventilation in response to an increase in H+ in the brain interstitial fluid.

      The Control of Ventilation in the Human Body

      The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.

      The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.

      Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.

      Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 82 - A 56-year-old man has been diagnosed with small cell lung carcinoma. The tumor...

    Incorrect

    • A 56-year-old man has been diagnosed with small cell lung carcinoma. The tumor measures 4 centimeters in its largest dimension and is not invading any surrounding structures. However, there are metastases in the ipsilateral hilar lymph nodes, and no distant metastases have been found. What is the TNM score for this patient, considering the primary tumor (T), regional lymph nodes (N), and distant metastases (M)?

      Your Answer:

      Correct Answer: T2 N1 M0

      Explanation:

      It is crucial to have knowledge about the TNM system for staging lung cancer. The absence of distant metastases eliminates one of the options immediately (as M must be 0).

      The size and invasion of the tumor are significant factors:
      – T1 is less than 3 cm
      – T2 is between 3 cm and 7 cm
      – T3 is more than 7 cm and/or involves invasion of the chest wall, parietal pleura, diaphragm, phrenic nerve, mediastinal pleura, or parietal pericardium
      – T4 can be any size but involves invasion of other structures

      To differentiate between N1 and N2, remember that N1 involves ipsilateral hilar or peribronchial lymph nodes, while N2 involves ipsilateral mediastinal and/or subcarinal lymph nodes.

      Small Cell Lung Cancer: Characteristics and Management

      Small cell lung cancer is a type of lung cancer that usually develops in the central part of the lungs and arises from APUD cells. This type of cancer is often associated with the secretion of hormones such as ADH and ACTH, which can cause hyponatremia and Cushing’s syndrome, respectively. In addition, ACTH secretion can lead to bilateral adrenal hyperplasia and hypokalemic alkalosis due to high levels of cortisol. Patients with small cell lung cancer may also experience Lambert-Eaton syndrome, which is characterized by antibodies to voltage-gated calcium channels causing a myasthenic-like syndrome.

      Management of small cell lung cancer depends on the stage of the disease. Patients with very early stage disease may be considered for surgery, while those with limited disease typically receive a combination of chemotherapy and radiotherapy. Patients with more extensive disease are offered palliative chemotherapy. Unfortunately, most patients with small cell lung cancer are diagnosed with metastatic disease, making treatment more challenging.

      Overall, small cell lung cancer is a complex disease that requires careful management and monitoring. Early detection and treatment can improve outcomes, but more research is needed to better understand the underlying mechanisms of this type of cancer.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 83 - What causes a cervical rib? ...

    Incorrect

    • What causes a cervical rib?

      Your Answer:

      Correct Answer: Elongation of the transverse processes of the 7th cervical vertebrae

      Explanation:

      Cervical ribs are formed when the transverse process of the 7th cervical vertebrae becomes elongated, resulting in a fibrous band that connects to the first thoracic rib.

      Cervical ribs are a rare anomaly that affects only 0.2-0.4% of the population. They are often associated with neurological symptoms and are caused by an anomalous fibrous band that originates from the seventh cervical vertebrae and may arc towards the sternum. While most cases are congenital and present around the third decade of life, some cases have been reported to occur following trauma. Bilateral cervical ribs are present in up to 70% of cases. Compression of the subclavian artery can lead to absent radial pulse and a positive Adsons test, which involves lateral flexion of the neck towards the symptomatic side and traction of the symptomatic arm. Treatment is usually only necessary when there is evidence of neurovascular compromise, and the traditional operative method for excision is a transaxillary approach.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 84 - A 26-year-old male is brought to the emergency department by his mother. He...

    Incorrect

    • A 26-year-old male is brought to the emergency department by his mother. He is agitated, restless, and anxious.

      Upon examination, dilated pupils are observed, and an ECG reveals sinus tachycardia.

      The patient has a medical history of chronic asthma and is currently taking modified-release theophylline tablets.

      According to his mother, he returned from a trip to Pakistan last night and has been taking antibiotics for bacterial gastroenteritis for the past four days. He has three days left on his antibiotic course.

      What could be the cause of his current presentation?

      Your Answer:

      Correct Answer: Ciprofloxacin

      Explanation:

      Terbinafine is frequently prescribed for the treatment of fungal nail infections as an antifungal medication.

      Theophylline and its Poisoning

      Theophylline is a naturally occurring methylxanthine that is commonly used as a bronchodilator in the management of asthma and COPD. Its exact mechanism of action is still unknown, but it is believed to be a non-specific inhibitor of phosphodiesterase, resulting in an increase in cAMP. Other proposed mechanisms include antagonism of adenosine and prostaglandin inhibition.

      However, theophylline poisoning can occur and is characterized by symptoms such as acidosis, hypokalemia, vomiting, tachycardia, arrhythmias, and seizures. In such cases, gastric lavage may be considered if the ingestion occurred less than an hour prior. Activated charcoal is also recommended, while whole-bowel irrigation can be performed if theophylline is in sustained-release form. Charcoal hemoperfusion is preferable to hemodialysis in managing theophylline poisoning.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 85 - A 50-year-old man visits the GP clinic for a routine hearing examination. He...

    Incorrect

    • A 50-year-old man visits the GP clinic for a routine hearing examination. He reports no issues with his hearing and has no significant medical history or medication use. After conducting Rinne and Weber tests on the patient, you determine that his hearing is within normal limits.

      What are the test findings for this patient?

      Your Answer:

      Correct Answer: Rinne: air conduction > bone conduction bilaterally; Weber: equal in both ears

      Explanation:

      The patient’s hearing exam results indicate normal hearing. The Rinne test showed more air conduction than bone conduction in both ears, which is typical for normal hearing. The Weber test also showed equal results in both ears, indicating no significant difference in hearing between the ears.

      Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness

      Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.

      Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.

      The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.

      Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 86 - A 52-year-old woman visited her family physician with complaints of pain in her...

    Incorrect

    • A 52-year-old woman visited her family physician with complaints of pain in her wrist and small joints of the hand. She mentioned that her joints felt stiff in the morning but improved throughout the day. The doctor prescribed glucocorticoids and methotrexate, which helped alleviate her symptoms. After a year, she returned to her doctor with a dry cough and shortness of breath that had been bothering her for a month. She denied any recent weight loss or coughing up blood. She is a non-smoker and drinks alcohol moderately. The woman has no significant medical or surgical history and has been a homemaker while her husband works in a shipyard. Her father died of a heart attack at the age of 77. What is the most likely finding on her chest X-ray?

      Your Answer:

      Correct Answer: Intrapulmonary nodules

      Explanation:

      1. Caplan syndrome is a condition characterized by intrapulmonary nodules found peripherally and bilaterally in individuals with both pneumoconiosis and rheumatoid arthritis. The immune system changes associated with rheumatoid arthritis are thought to affect the body’s response to coal dust particles, leading to the development of nodules.
      2. A normal chest X-ray does not rule out the possibility of underlying respiratory disease. If there is a high clinical suspicion, further investigation should be pursued to confirm or rule out potential diagnoses, such as asthma.
      3. Chronic obstructive respiratory disease, which includes chronic bronchitis and emphysema, is characterized by hyperinflated lungs and a flattened diaphragm on chest X-ray. This is due to the loss of elastic recoil in the lungs and airway obstruction caused by inflammation of the bronchi.
      4. Silicosis is a restrictive lung disease that develops in individuals exposed to silica, such as sandblasters and those working in silica mines. Eggshell calcification of hilar lymph nodes is a characteristic finding on chest X-ray.
      5. Squamous cell carcinoma of the lungs, a non-small cell type of lung cancer, is associated with a central bronchial opacity around the hilar region on chest X-ray. This type of cancer is more common in smokers and may be accompanied by hypercalcemia as a paraneoplastic syndrome.

      Respiratory Manifestations of Rheumatoid Arthritis

      Patients with rheumatoid arthritis may experience a range of respiratory problems. These can include pulmonary fibrosis, pleural effusion, pulmonary nodules, bronchiolitis obliterans, and pleurisy. Additionally, drug therapy for rheumatoid arthritis, such as methotrexate, can lead to complications like pneumonitis. In some cases, patients may develop Caplan’s syndrome, which involves the formation of massive fibrotic nodules due to occupational coal dust exposure. Finally, immunosuppression caused by rheumatoid arthritis treatment can increase the risk of infection, including atypical infections. Overall, it is important for healthcare providers to be aware of these potential respiratory complications in patients with rheumatoid arthritis.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 87 - A 78-year-old man comes to the emergency department complaining of increasing difficulty in...

    Incorrect

    • A 78-year-old man comes to the emergency department complaining of increasing difficulty in breathing over the past two days. He has a medical history of squamous cell lung cancer.

      Upon examination, the trachea is observed to have shifted towards the left side, with dull percussion and absence of breath sounds throughout the left chest.

      What is the probable diagnosis?

      Your Answer:

      Correct Answer: Left lung collapse

      Explanation:

      When a lung collapses, it can cause the trachea to shift towards the affected side, and there may be dullness on percussion and reduced breath sounds throughout the lung field. This is because the decrease in pressure on the affected side causes the mediastinum and trachea to move towards it.

      A massive pleural effusion, on the other hand, would cause widespread dullness and absent breath sounds, but it would push the trachea away from the affected side due to increased pressure.

      Pneumonia typically only affects one lung zone, so there would not be widespread dullness or absent breath sounds throughout the hemithorax. It also does not usually affect the position of the mediastinum or trachea.

      Pneumothorax would be hyperresonant on percussion, not dull, and it may push the trachea away from the affected side in severe cases, but this is more common in tension pneumothoraces that occur after trauma.

      A lobectomy may cause the trachea to shift towards the same side as the surgery due to decreased pressure, but it would not cause dullness or absent breath sounds throughout the lung fields.

      Understanding White Lung Lesions on Chest X-Rays

      When examining a chest x-ray, white shadowing in the lungs can indicate a variety of conditions. These may include consolidation, pleural effusion, collapse, pneumonectomy, specific lesions such as tumors, or fluid accumulation such as pulmonary edema. In cases where there is a complete white-out of one side of the chest, it is important to assess the position of the trachea. If the trachea is pulled towards the side of the white-out, it may indicate pneumonectomy, lung collapse, or pulmonary hypoplasia. If the trachea is pushed away from the white-out, it may indicate pleural effusion, a large thoracic mass, or a diaphragmatic hernia. Other signs of a positive mass effect may include leftward bowing of the azygo-oesophageal recess and splaying of the ribs on the affected side. Understanding the potential causes of white lung lesions on chest x-rays can aid in accurate diagnosis and treatment.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 88 - An anxious father brings his 6-month-old to the out of hours GP. The...

    Incorrect

    • An anxious father brings his 6-month-old to the out of hours GP. The baby has been coughing persistently for the past 2 days and it seems to be getting worse. He also has a runny nose and an audible wheeze. The GP diagnoses bronchiolitis.

      What is the most probable causative organism in this case?

      Your Answer:

      Correct Answer: Respiratory syncytial virus

      Explanation:

      Understanding Bronchiolitis

      Bronchiolitis is a condition that is characterized by inflammation of the bronchioles. It is a serious lower respiratory tract infection that is most common in children under the age of one year. The pathogen responsible for 75-80% of cases is respiratory syncytial virus (RSV), while other causes include mycoplasma and adenoviruses. Bronchiolitis is more serious in children with bronchopulmonary dysplasia, congenital heart disease, or cystic fibrosis.

      The symptoms of bronchiolitis include coryzal symptoms, dry cough, increasing breathlessness, and wheezing. Fine inspiratory crackles may also be present. Children with bronchiolitis may experience feeding difficulties associated with increasing dyspnoea, which is often the reason for hospital admission.

      Immediate referral to hospital is recommended if the child has apnoea, looks seriously unwell to a healthcare professional, has severe respiratory distress, central cyanosis, or persistent oxygen saturation of less than 92% when breathing air. Clinicians should consider referring to hospital if the child has a respiratory rate of over 60 breaths/minute, difficulty with breastfeeding or inadequate oral fluid intake, or clinical dehydration.

      The investigation for bronchiolitis involves immunofluorescence of nasopharyngeal secretions, which may show RSV. Management of bronchiolitis is largely supportive, with humidified oxygen given via a head box if oxygen saturations are persistently < 92%. Nasogastric feeding may be needed if children cannot take enough fluid/feed by mouth, and suction is sometimes used for excessive upper airway secretions.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 89 - A 55-year-old woman comes to the clinic complaining of a persistent cough and...

    Incorrect

    • A 55-year-old woman comes to the clinic complaining of a persistent cough and increased production of sputum over the past year. She also reports feeling fatigued and experiencing shortness of breath. The patient mentions having had four chest infections in the last 12 months, all of which were treated with antibiotics. She has no medical or family history and has never smoked.

      The healthcare provider suspects that bronchiectasis may be the underlying cause of her symptoms and orders appropriate tests, including a sputum sample.

      What is the most likely organism to be identified?

      Your Answer:

      Correct Answer:

      Explanation:

      Bronchiectasis patients may have various bacteria present in their respiratory system, with Haemophilus influenzae and Pseudomonas aeruginosa being the most common. Staphylococcus aureus has also been found but not as frequently. Respiratory syncytial virus has not been detected in acute exacerbations of bronchiectasis. It is crucial to identify the specific bacteria causing exacerbations as antibiotic sensitivity patterns differ, and sputum culture results can impact the effectiveness of treatment. These findings are outlined in the British Thoracic Society’s guideline for non-CF bronchiectasis and a study by Metaxas et al. on the role of atypical bacteria and respiratory syncytial virus in bronchiectasis exacerbations.

      Bronchiectasis is a condition where the airways become permanently dilated due to chronic inflammation or infection. Before treatment, it is important to identify any underlying causes that can be addressed, such as immune deficiencies. Management of bronchiectasis includes physical training, such as inspiratory muscle training, which has been shown to be effective for patients without cystic fibrosis. Postural drainage, antibiotics for exacerbations, and long-term rotating antibiotics for severe cases are also recommended. Bronchodilators may be used in selected cases, and immunizations are important to prevent infections. Surgery may be considered for localized disease. The most common organisms isolated from patients with bronchiectasis include Haemophilus influenzae, Pseudomonas aeruginosa, Klebsiella spp., and Streptococcus pneumoniae.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 90 - A 40-year-old woman visits her GP after being treated at the Emergency Department...

    Incorrect

    • A 40-year-old woman visits her GP after being treated at the Emergency Department for a foreign body lodged in her throat for 2 days. Although the object has been removed, she is experiencing difficulty swallowing. Upon further questioning, she mentions altered sensation while swallowing, describing it as a sensation of 'not feeling like food is being swallowed' during meals.

      Which nerve or nerves are likely to have been affected?

      Your Answer:

      Correct Answer: Internal laryngeal nerve

      Explanation:

      The internal laryngeal nerve is responsible for providing sensory information to the supraglottis and branches off from the superior laryngeal nerve. It is important to note that the cervical plexus, external laryngeal nerve, recurrent laryngeal nerve, and superior laryngeal nerve do not perform the same function as the internal laryngeal nerve.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 91 - A 65-year-old man visited his family doctor with a persistent cough that has...

    Incorrect

    • A 65-year-old man visited his family doctor with a persistent cough that has been bothering him for the last six months. He complains of coughing up clear sputum and how it has been affecting his daily life. He has also noticed that he gets short of breath more easily and cannot keep up with his grandchildren. He has a medical history of well-controlled diabetes and dyslipidemia. He attended a smoking cessation program a few months ago, but he finds it challenging to quit smoking after smoking a pack of cigarettes a day for the past 40 years. During the examination, the doctor hears bilateral wheezing with some crackles. The doctor expresses concerns about a possible lung disease due to his long history of smoking and refers him for a pulmonary function test. What is likely to be found during the test?

      Your Answer:

      Correct Answer: The FEV1/FVC ratio is lower than normal as there is a larger decrease in FEV1 than FVC

      Explanation:

      The patient’s prolonged smoking history and current symptoms suggest a diagnosis of chronic bronchitis and possibly emphysema, both of which are obstructive lung diseases. These conditions cause air to become trapped in the lungs, making it difficult to breathe out. Pulmonary function tests typically show a greater decrease in FEV1 than FVC in obstructive lung diseases, resulting in a lower FEV1/FVC ratio (also known as the Tiffeneau-Pinelli index). This is different from restrictive lung diseases, which may sometimes show an increase in the FEV1/FVC ratio due to a larger decrease in FVC than FEV1. Chest X-rays may reveal hyperinflated lungs in patients with obstructive lung diseases. An increase in FEV1 may occur in healthy individuals after exercise training or in patients with conditions like asthma after taking medication. Restrictive lung diseases, such as pneumoconioses, hypersensitivity pneumonitis, and idiopathic pulmonary fibrosis, are typically associated with a decrease in the FEV1/FVC ratio.

      Understanding Pulmonary Function Tests

      Pulmonary function tests are a useful tool in determining whether a respiratory disease is obstructive or restrictive. These tests measure various aspects of lung function, such as forced expiratory volume in one second (FEV1) and forced vital capacity (FVC). By analyzing the results of these tests, doctors can diagnose and monitor conditions such as asthma, COPD, pulmonary fibrosis, and neuromuscular disorders.

      In obstructive lung diseases, such as asthma and COPD, the FEV1 is significantly reduced, while the FVC may be reduced or normal. The FEV1% (FEV1/FVC) is also reduced. On the other hand, in restrictive lung diseases, such as pulmonary fibrosis and asbestosis, the FEV1 is reduced, but the FVC is significantly reduced. The FEV1% (FEV1/FVC) may be normal or increased.

      It is important to note that there are many conditions that can affect lung function, and pulmonary function tests are just one tool in diagnosing and managing respiratory diseases. However, understanding the results of these tests can provide valuable information for both patients and healthcare providers.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 92 - A 72-year-old man is admitted to the hospital with symptoms of the flu,...

    Incorrect

    • A 72-year-old man is admitted to the hospital with symptoms of the flu, confusion, and vomiting. His finger prick glucose levels are within normal range. The physician suspects that the patient's living conditions, which include poor housing and lack of support at home, may have contributed to his symptoms.

      What physiological response is expected in this patient?

      Your Answer:

      Correct Answer: An increased affinity of haemoglobin for oxygen

      Explanation:

      Methaemoglobin causes a leftward shift of the oxygen dissociation curve, indicating an increased affinity of haemoglobin for oxygen. This results in reduced offloading of oxygen into the tissues, leading to decreased oxygen delivery. It is important to understand the oxygen-dissociation curve and the effects of carbon monoxide poisoning, which causes increased oxygen binding to methaemoglobin. A rightward shift of the curve indicates increased oxygen delivery to the tissues, which is not the case in methaemoglobinemia.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 93 - A 65-year-old man visits his doctor complaining of a productive cough and difficulty...

    Incorrect

    • A 65-year-old man visits his doctor complaining of a productive cough and difficulty breathing for the past 10 days. The doctor prescribes antibiotics, but after a week, the patient's symptoms persist and he develops a fever and pain when breathing in. The doctor orders a chest x-ray, which indicates the presence of an empyema. What is the probable causative agent responsible for this condition?

      Your Answer:

      Correct Answer: Streptococcus pneumoniae

      Explanation:

      An accumulation of pus in the pleural space, known as empyema, is a possible complication of pneumonia and is responsible for the patient’s pleurisy. Streptococcus pneumoniae, the most frequent cause of pneumonia, is also the leading cause of empyema.

      Pneumonia is a common condition that affects the alveoli of the lungs, usually caused by a bacterial infection. Other causes include viral and fungal infections. Streptococcus pneumoniae is the most common organism responsible for pneumonia, accounting for 80% of cases. Haemophilus influenzae is common in patients with COPD, while Staphylococcus aureus often occurs in patients following influenzae infection. Mycoplasma pneumoniae and Legionella pneumophilia are atypical pneumonias that present with dry cough and other atypical symptoms. Pneumocystis jiroveci is typically seen in patients with HIV. Idiopathic interstitial pneumonia is a group of non-infective causes of pneumonia.

      Patients who develop pneumonia outside of the hospital have community-acquired pneumonia (CAP), while those who develop it within hospitals are said to have hospital-acquired pneumonia. Symptoms of pneumonia include cough, sputum, dyspnoea, chest pain, and fever. Signs of systemic inflammatory response, tachycardia, reduced oxygen saturations, and reduced breath sounds may also be present. Chest x-ray is used to diagnose pneumonia, with consolidation being the classical finding. Blood tests, such as full blood count, urea and electrolytes, and CRP, are also used to check for infection.

      Patients with pneumonia require antibiotics to treat the underlying infection and supportive care, such as oxygen therapy and intravenous fluids. Risk stratification is done using a scoring system called CURB-65, which stands for confusion, respiration rate, blood pressure, age, and is used to determine the management of patients with community-acquired pneumonia. Home-based care is recommended for patients with a CRB65 score of 0, while hospital assessment is recommended for all other patients, particularly those with a CRB65 score of 2 or more. The CURB-65 score also correlates with an increased risk of mortality at 30 days.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 94 - A 55-year-old Caucasian man presents to the ENT clinic with complaints of gradual...

    Incorrect

    • A 55-year-old Caucasian man presents to the ENT clinic with complaints of gradual hearing loss over the past year. He reports having to turn up the volume on his television to the maximum to hear it comfortably. There are no associated symptoms such as tinnitus or dizziness, and the patient has no significant medical history.

      Upon examination, a Weber and Rinne test reveal conductive hearing loss in the left ear. Otoscope examination shows no signs of middle ear effusion or tympanic membrane involvement in either ear. A pure tone audiometry confirms conductive hearing loss in the left ear, with a Carhart's notch present.

      The physician diagnoses the patient with otosclerosis and discusses treatment options.

      What is the underlying pathology of otosclerosis?

      Your Answer:

      Correct Answer: Replacement of normal bone by vascular spongy bone

      Explanation:

      Otosclerosis is a condition where normal bone is replaced by spongy bone with a high vascularity. This leads to progressive conductive hearing loss, without any other neurological impairments. The replacement of the normal endochondral layer of the bony labyrinth by spongy bone affects the ability of the stapes to act as a piston, resulting in the conduction of sound from the middle ear to the inner ear being affected. Caucasians are most commonly affected by this condition.

      Benign paroxysmal positional vertigo (BPPV) is caused by the dislodgement of otoliths into the semicircular canals. This condition results in vertiginous dizziness upon positional changes, but does not affect auditory function.

      Meniere’s disease is caused by endolymphatic hydrops, which is the accumulation of fluid in the inner ear. The pathophysiology of this condition is not well understood, but it leads to vertigo, tinnitus, hearing loss, and aural fullness.

      Cholesteatoma is caused by the accumulation of desquamated, stratified squamous epithelium. This leads to the formation of a mass that can gradually enlarge and erode the ossicle chain, resulting in conductive hearing loss.

      Presbycusis is a type of sensorineural hearing loss that occurs as a result of aging. The degeneration of the organ of Corti is one of the underlying pathological mechanisms that causes this condition. This leads to the destruction of outer hair cells and a decrease in hearing sensitivity.

      Understanding Otosclerosis: A Progressive Conductive Deafness

      Otosclerosis is a medical condition that occurs when normal bone is replaced by vascular spongy bone. This condition leads to a progressive conductive deafness due to the fixation of the stapes at the oval window. It is an autosomal dominant condition that typically affects young adults, with onset usually occurring between the ages of 20-40 years.

      The main features of otosclerosis include conductive deafness, tinnitus, a normal tympanic membrane, and a positive family history. In some cases, patients may also experience a flamingo tinge, which is caused by hyperemia and affects around 10% of patients.

      Management of otosclerosis typically involves the use of a hearing aid or stapedectomy. A hearing aid can help to improve hearing, while a stapedectomy involves the surgical removal of the stapes bone and replacement with a prosthesis.

      Overall, understanding otosclerosis is important for individuals who may be at risk of developing this condition. Early diagnosis and management can help to improve hearing and prevent further complications.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 95 - A 70-year-old man with lung cancer is having a left pneumonectomy. The left...

    Incorrect

    • A 70-year-old man with lung cancer is having a left pneumonectomy. The left main bronchus is being divided. Which thoracic vertebrae is located behind this structure?

      Your Answer:

      Correct Answer: T6

      Explanation:

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 96 - A middle-aged woman with myasthenia gravis experiences a myasthenic crisis leading to respiratory...

    Incorrect

    • A middle-aged woman with myasthenia gravis experiences a myasthenic crisis leading to respiratory failure. Which nerve root is most commonly affected in this scenario?

      Your Answer:

      Correct Answer: C4

      Explanation:

      The phrenic nerve receives input from C3, C4, and C5, which is essential for keeping the diaphragm functioning properly. In cases of medical emergencies, mechanical ventilation is often the first-line management. C2 primarily innervates muscles in the neck, while C7 and T1 are part of the brachial plexus and contribute to the formation of nerves in the upper limb.

      The Phrenic Nerve: Origin, Path, and Supplies

      The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.

      The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.

      Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 97 - A 44-year-old heavy smoker presents with a productive cough and progressively worsening shortness...

    Incorrect

    • A 44-year-old heavy smoker presents with a productive cough and progressively worsening shortness of breath on exertion. The patient's spirometry results are forwarded to you in clinic for review.

      Tidal volume (TV) = 400 mL.
      Vital capacity (VC) = 3,300 mL.
      Inspiratory capacity (IC) = 2,600 mL.
      FEV1/FVC = 60%

      Body plethysmography is undertaken, demonstrating a residual volume (RV) of 1,200 mL.

      What is this patient's total lung capacity (TLC)?

      Your Answer:

      Correct Answer: 4,500 mL

      Explanation:

      To calculate the total lung capacity, one can add the vital capacity and residual volume. For example, if the vital capacity is 3300 mL and the residual volume is 1200 mL, the total lung capacity would be 4500 mL. It is important to note that tidal volume, inspiratory capacity, and the FEV1/FVC ratio are other measurements related to lung function. Residual volume refers to the amount of air left in the lungs after a maximal exhalation, while total lung capacity refers to the volume of air in the lungs after a maximal inhalation.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 98 - A 12-year-old girl is referred to a respiratory specialist due to persistent episodes...

    Incorrect

    • A 12-year-old girl is referred to a respiratory specialist due to persistent episodes of shortness of breath. She also suffers from severe hay fever and eczema. After undergoing a peak expiratory flow test, signs of outflow obstruction of her lungs are detected. The doctor prescribes beclomethasone and salbutamol for her and advises her mother to keep her away from dust, as asthma is often linked to hypersensitivity to dust. Which type of hypersensitivity is associated with asthma?

      Your Answer:

      Correct Answer: Type 1 hypersensitivity

      Explanation:

      Asthma is linked to type 1 hypersensitivity, which is caused by the binding of IgE to Mast cells, resulting in an inflammatory reaction. Other types of hypersensitivity include type 2, which involves the binding of IgG or IgM to cell surface antigens, type 3, which is immune complex-mediated, and type 4, which is T-cell mediated.

      Asthma is a common respiratory disorder that affects both children and adults. It is characterized by chronic inflammation of the airways, resulting in reversible bronchospasm and airway obstruction. While asthma can develop at any age, it typically presents in childhood and may improve or resolve with age. However, it can also persist into adulthood and cause significant morbidity, with around 1,000 deaths per year in the UK.

      Several risk factors can increase the likelihood of developing asthma, including a personal or family history of atopy, antenatal factors such as maternal smoking or viral infections, low birth weight, not being breastfed, exposure to allergens and air pollution, and the hygiene hypothesis. Patients with asthma may also suffer from other atopic conditions such as eczema and hay fever, and some may be sensitive to aspirin. Occupational asthma is also a concern for those exposed to allergens in the workplace.

      Symptoms of asthma include coughing, dyspnea, wheezing, and chest tightness, with coughing often worse at night. Signs may include expiratory wheezing on auscultation and reduced peak expiratory flow rate. Diagnosis is typically made through spirometry, which measures the volume and speed of air during exhalation and inhalation.

      Management of asthma typically involves the use of inhalers to deliver drug therapy directly to the airways. Short-acting beta-agonists such as salbutamol are the first-line treatment for relieving symptoms, while inhaled corticosteroids like beclometasone dipropionate and fluticasone propionate are used for daily maintenance therapy. Long-acting beta-agonists like salmeterol and leukotriene receptor antagonists like montelukast may also be used in combination with other medications. Maintenance and reliever therapy (MART) is a newer approach that combines ICS and a fast-acting LABA in a single inhaler for both daily maintenance and symptom relief. Recent guidelines recommend offering a leukotriene receptor antagonist instead of a LABA for patients on SABA + ICS whose asthma is not well controlled, and considering MART for those with poorly controlled asthma.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 99 - A 68-year-old woman has been diagnosed with laryngeal cancer and has quit smoking....

    Incorrect

    • A 68-year-old woman has been diagnosed with laryngeal cancer and has quit smoking. Surgery is planned to remove the cancer through a laryngectomy. What vertebral level/levels will the organ be located during the procedure?

      Your Answer:

      Correct Answer: C3 to C6

      Explanation:

      The larynx is situated in the front of the neck at the level of the C3-C6 vertebrae. This is the correct location for accessing the larynx during a laryngectomy. The larynx is not located at the C1-C2 level, as these are the atlas bones. It is also not located at the C2-C3 level, which is where the hyoid bone can be found. The C7 level is where the isthmus of the thyroid gland is located, not the larynx.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 100 - A 26-year-old man is brought to the emergency department after being rescued at...

    Incorrect

    • A 26-year-old man is brought to the emergency department after being rescued at sea following a sailing accident. He is currently unresponsive with a Glasgow Coma Score of 9 (E2 V3 M4).

      His vital signs include a heart rate of 110 beats per minute, blood pressure of 110/76 mmHg, oxygen saturation of 93%, and temperature of 34.8 ÂșC. An ECG is unremarkable and venous blood indicates type 2 respiratory failure. The patient's oxygen dissociation curve shows a leftward shift.

      What is the cause of the leftward shift in this 26-year-old patient's oxygen dissociation curve?

      Your Answer:

      Correct Answer: Hypothermia

      Explanation:

      The only answer that causes a leftward shift in the oxygen dissociation curve is hypothermia. When tissues undergo aerobic respiration, they generate heat, which changes the shape of the haemoglobin molecule and reduces its affinity for oxygen. This results in the release of oxygen at respiring tissues. In contrast, lower temperatures in the lungs cause a leftward shift in the oxygen dissociation curve, which increases the binding of oxygen to haemoglobin.

      Hypercapnia is not the correct answer because it causes a rightward shift in the oxygen dissociation curve. Hypercapnia lowers blood pH, which changes the shape of haemoglobin and reduces its affinity for oxygen.

      Hypoxaemia is not the correct answer because the partial pressure of oxygen does not affect the oxygen dissociation curve. The partial pressure of oxygen does not change the affinity of haemoglobin for oxygen.

      Increased concentration of 2,3-diphosphoglycerate (2,3-DPG) is not the correct answer because higher concentrations of 2,3-DPG reduce haemoglobin’s affinity for oxygen, causing a right shift in the oxygen dissociation curve.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Respiratory System (5/10) 50%
Passmed