-
Question 1
Correct
-
As a junior doctor, you are taking the medical history of a patient who is scheduled for an elective knee replacement. During the physical examination, you hear a diastolic murmur and observe a collapsing pulse while checking the heart rate. Upon examining the hands, you notice pulsations of red coloration on the nail beds. Other than these findings, the examination appears normal.
What could be the probable reason behind these examination results if the patient is slightly older?Your Answer: Aortic regurgitation
Explanation:The patient’s examination findings suggest aortic regurgitation, which is characterized by an early diastolic, high-pitched, blowing murmur that is louder when the patient sits forward and at the left sternal edge. Aortic regurgitation can also cause a collapsing pulse, dyspnoea, orthopnoea, paroxysmal nocturnal dyspnoea, and visible pulsing red colouration of the nails (quincke’s sign).
It is important to note that aortic stenosis does not cause a diastolic murmur or collapsing pulse. Instead, it typically produces an ejection systolic murmur that is louder on expiration and may cause a slow rising pulse.
Similarly, mitral regurgitation does not cause a diastolic murmur or collapsing pulse. It typically produces a pansystolic murmur.
Mitral stenosis causes a mid-late diastolic murmur but does not commonly cause a collapsing pulse.
Pulmonary stenosis causes an ejection systolic murmur but does not commonly cause a collapsing pulse or diastolic murmur.
Aortic regurgitation is a condition where the aortic valve of the heart leaks, causing blood to flow in the opposite direction during ventricular diastole. This can be caused by disease of the aortic valve or by distortion or dilation of the aortic root and ascending aorta. The most common causes of AR due to valve disease include rheumatic fever, calcific valve disease, and infective endocarditis. On the other hand, AR due to aortic root disease can be caused by conditions such as aortic dissection, hypertension, and connective tissue diseases like Marfan’s and Ehler-Danlos syndrome.
The features of AR include an early diastolic murmur, a collapsing pulse, wide pulse pressure, Quincke’s sign, and De Musset’s sign. In severe cases, a mid-diastolic Austin-Flint murmur may also be present. Suspected AR should be investigated with echocardiography.
Management of AR involves medical management of any associated heart failure and surgery in symptomatic patients with severe AR or asymptomatic patients with severe AR who have LV systolic dysfunction.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Incorrect
-
A 40-year-old male patient complains of shortness of breath, weight loss, and night sweats for the past six weeks. Despite being generally healthy, he is experiencing these symptoms. During the examination, the patient's fingers show clubbing, and his temperature is 37.8°C. His pulse is 88 beats per minute, and his blood pressure is 128/80 mmHg. Upon listening to his heart, a pansystolic murmur is audible. What signs are likely to be found in this patient?
Your Answer:
Correct Answer: Splinter haemorrhages
Explanation:Symptoms and Diagnosis of Infective Endocarditis
This individual has a lengthy medical history of experiencing night sweats and has developed clubbing of the fingers, along with a murmur. These symptoms are indicative of infective endocarditis. In addition to splinter hemorrhages in the nails, other symptoms that may be present include Roth spots in the eyes, Osler’s nodes and Janeway lesions in the palms and fingers of the hands, and splenomegaly instead of cervical lymphadenopathy. Cyanosis is not typically associated with clubbing and may suggest idiopathic pulmonary fibrosis or cystic fibrosis in younger individuals. However, this individual has no prior history of cystic fibrosis and has only been experiencing symptoms for six weeks.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Incorrect
-
An 80-year-old man visits his GP complaining of progressive breathlessness that has been worsening over the past 6 months. During the examination, the GP observes pitting oedema in the mid-shins. The patient has a medical history of type 2 diabetes mellitus and a myocardial infarction that occurred 5 years ago. The GP orders a blood test to investigate the cause of the patient's symptoms.
The blood test reveals a B-type natriuretic peptide (BNP) level of 907 pg/mL, which is significantly higher than the normal range (< 100). Can you identify the source of BNP secretion?Your Answer:
Correct Answer: Ventricular myocardium
Explanation:BNP is primarily secreted by the ventricular myocardium in response to stretching, making it a valuable indicator of heart failure. While it can be used for screening and prognostic scoring, it is not secreted by the atrial endocardium, distal convoluted tubule, pulmonary artery endothelium, or renal mesangial cells.
B-type natriuretic peptide (BNP) is a hormone that is primarily produced by the left ventricular myocardium in response to strain. Although heart failure is the most common cause of elevated BNP levels, any condition that causes left ventricular dysfunction, such as myocardial ischemia or valvular disease, may also raise levels. In patients with chronic kidney disease, reduced excretion may also lead to elevated BNP levels. Conversely, treatment with ACE inhibitors, angiotensin-2 receptor blockers, and diuretics can lower BNP levels.
BNP has several effects, including vasodilation, diuresis, natriuresis, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. Clinically, BNP is useful in diagnosing patients with acute dyspnea. A low concentration of BNP (<100 pg/mL) makes a diagnosis of heart failure unlikely, but elevated levels should prompt further investigation to confirm the diagnosis. Currently, NICE recommends BNP as a helpful test to rule out a diagnosis of heart failure. In patients with chronic heart failure, initial evidence suggests that BNP is an extremely useful marker of prognosis and can guide treatment. However, BNP is not currently recommended for population screening for cardiac dysfunction.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Incorrect
-
A 78-year-old male patient with AF, who is on appropriate medication for rate control, is admitted with dig toxicity after receiving antibiotics for a UTI. What ECG finding is most probable?
Your Answer:
Correct Answer: Reverse tick abnormality
Explanation:Dig Toxicity and its Treatment
Dig Toxicity can occur as a result of taking antibiotics that inhibit enzymes, especially if the prescribing physician does not take this into account. One of the most common signs of dig toxicity is the reverse tick abnormality, which can be detected through an electrocardiogram (ECG).
To treat dig toxicity, it is important to first address any electrolyte imbalances that may be present. In more severe cases, a monoclonal antibody called digibind may be administered to help alleviate symptoms. Overall, it is important for healthcare providers to be aware of the potential for dig toxicity and to take appropriate measures to prevent and treat it.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Incorrect
-
You are on the ward and notice that an elderly patient lying supine in a monitored bed is hypotensive, with a blood pressure of 90/70 mmHg and tachycardic, with a heart rate of 120 beats/minute.
You adjust the bed to raise the patient's legs by 45 degrees and after 1 minute you measure the blood pressure again. The blood pressure increases to 100/75 and you prescribe a 500mL bag of normal saline to be given IV over 15 minutes.
What physiological association explains the increase in the elderly patient's blood pressure?Your Answer:
Correct Answer: Venous return is proportional to stroke volume
Explanation:Fluid responsiveness is typically indicated by changes in cardiac output or stroke volume in response to fluid administration. However, the strength of cardiac muscle contraction is influenced by adrenaline and noradrenaline, which enhance cardiac contractility rather than Starling’s law.
Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.
Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.
Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
A 67-year-old man is scheduled for surgery to treat transitional cell carcinoma of the left kidney. During the procedure, the surgeon needs to locate and dissect the left renal artery. Can you identify the vertebral level where the origin of this artery can be found?
Your Answer:
Correct Answer: L1
Explanation:The L1 level is where the left renal artery is located.
Located just below the superior mesenteric artery at L1, the left renal artery arises from the abdominal aorta. It is positioned slightly lower than the right renal artery.
At the T10 vertebral level, the vagal trunk accompanies the oesophagus as it passes through the diaphragm.
The T12 vertebral level marks the point where the aorta passes through the diaphragm, along with the thoracic duct and azygous veins. Additionally, this is where the coeliac trunk branches out.
The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Incorrect
-
A 50-year-old man is brought to the hospital after a head-on collision. Upon initial resuscitation, a chest X-ray reveals a widened mediastinum. An urgent CT aortogram confirms a traumatic aortic rupture.
Where is the most probable location for a traumatic aortic rupture to occur?Your Answer:
Correct Answer: Proximal descending aorta distal to origin of left subclavian artery (aortic isthmus)
Explanation:Although the aorta can be ruptured by trauma at any location, the aortic isthmus (the section of the proximal descending aorta located below the left subclavian artery) is the most frequent site of rupture resulting from deceleration injuries.
Thoracic Aorta Rupture: Causes, Symptoms, Diagnosis, and Treatment
Thoracic aorta rupture is a life-threatening condition that occurs due to decelerating force, such as a road traffic accident or a fall from a great height. Most people die at the scene, while survivors may have an incomplete laceration at the ligamentum arteriosum of the aorta. The clinical features of thoracic aorta rupture include a contained hematoma and persistent hypotension, which can be detected mainly by history and changes in chest X-rays. The X-ray changes include a widened mediastinum, trachea/esophagus to the right, depression of the left main stem bronchus, widened paratracheal stripe/paraspinal interfaces, obliteration of the space between the aorta and pulmonary artery, and rib fracture/left hemothorax.
The diagnosis of thoracic aorta rupture is usually made through angiography, with CT aortogram being the preferred method. Treatment involves repair or replacement of the ruptured aorta, with endovascular repair being the ideal option. In summary, thoracic aorta rupture is a serious condition that requires prompt diagnosis and treatment to prevent fatal outcomes.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Incorrect
-
A 28-year-old male is being evaluated at the pre-operative assessment clinic. A murmur is detected in the 4th intercostal space adjacent to the left side of the sternum. What is the most probable source of the murmur?
Your Answer:
Correct Answer: Tricuspid valve
Explanation:The optimal location for auscultating the tricuspid valve is near the sternum, while the projected sound from the mitral area is most audible at the cardiac apex.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
An 68-year-old patient visits the GP complaining of a cough that produces green sputum, fever and shortness of breath. After being treated with antibiotics, her symptoms improve. However, three weeks later, she experiences painful joints, chest pain, fever and an erythema marginatum rash. What is the probable causative organism responsible for the initial infection?
Your Answer:
Correct Answer: Streptococcus pyogenes
Explanation:An immunological reaction is responsible for the development of rheumatic fever.
Rheumatic fever is a condition that occurs as a result of an immune response to a recent Streptococcus pyogenes infection, typically occurring 2-4 weeks after the initial infection. The pathogenesis of rheumatic fever involves the activation of the innate immune system, leading to antigen presentation to T cells. B and T cells then produce IgG and IgM antibodies, and CD4+ T cells are activated. This immune response is thought to be cross-reactive, mediated by molecular mimicry, where antibodies against M protein cross-react with myosin and the smooth muscle of arteries. This response leads to the clinical features of rheumatic fever, including Aschoff bodies, which are granulomatous nodules found in rheumatic heart fever.
To diagnose rheumatic fever, evidence of recent streptococcal infection must be present, along with 2 major criteria or 1 major criterion and 2 minor criteria. Major criteria include erythema marginatum, Sydenham’s chorea, polyarthritis, carditis and valvulitis, and subcutaneous nodules. Minor criteria include raised ESR or CRP, pyrexia, arthralgia, and prolonged PR interval.
Management of rheumatic fever involves antibiotics, typically oral penicillin V, as well as anti-inflammatories such as NSAIDs as first-line treatment. Any complications that develop, such as heart failure, should also be treated. It is important to diagnose and treat rheumatic fever promptly to prevent long-term complications such as rheumatic heart disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
A 75-year-old male presents to the GP clinic complaining of increased shortness of breath during physical activity and swelling in both ankles. The GP schedules an echocardiogram for him as an outpatient. During the echocardiogram, the patient's heart rate was 72 bpm and blood pressure was 136/88 mmHg. The results of the echocardiogram show an end-diastolic volume of 105ml and an end-systolic volume of 65ml. What is the left ventricular ejection fraction (LVEF) of this patient?
Your Answer:
Correct Answer: 40%
Explanation:Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.
Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.
Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Incorrect
-
A 50-year-old white male is diagnosed with hypertension during a routine checkup at his GP clinic. What is the initial choice of antihypertensive medication for white males who are under 55 years of age?
Your Answer:
Correct Answer: ACE inhibitor
Explanation:For patients under 55 years of age who are white, ACE inhibitors are the preferred initial medication for hypertension. These drugs have also been shown to improve survival rates after a heart attack and in cases of congestive heart failure.
However, for black patients or those over 55 years of age, a calcium channel blocker is the recommended first-line treatment. Beta blockers and diuretics are no longer considered the primary medication for hypertension.
Hypertension is a common medical condition that refers to chronically raised blood pressure. It is a significant risk factor for cardiovascular disease such as stroke and ischaemic heart disease. Normal blood pressure can vary widely according to age, gender, and individual physiology, but hypertension is defined as a clinic reading persistently above 140/90 mmHg or a 24-hour blood pressure average reading above 135/85 mmHg.
Around 90-95% of patients with hypertension have primary or essential hypertension, which is caused by complex physiological changes that occur as we age. Secondary hypertension may be caused by a variety of endocrine, renal, and other conditions. Hypertension typically does not cause symptoms unless it is very high, but patients may experience headaches, visual disturbance, or seizures.
Diagnosis of hypertension involves 24-hour blood pressure monitoring or home readings using an automated sphygmomanometer. Patients with hypertension typically have tests to check for renal disease, diabetes mellitus, hyperlipidaemia, and end-organ damage. Management of hypertension involves drug therapy using antihypertensives, modification of other risk factors, and monitoring for complications. Common drugs used to treat hypertension include angiotensin-converting enzyme inhibitors, calcium channel blockers, thiazide type diuretics, and angiotensin II receptor blockers. Drug therapy is decided by well-established NICE guidelines, which advocate a step-wise approach.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Incorrect
-
Which nerve is most vulnerable to damage when there is a cut on the upper lateral margin of the popliteal fossa in older adults?
Your Answer:
Correct Answer: Common peroneal nerve
Explanation:The lower infero-lateral aspect of the fossa is where the sural nerve exits, and it is at a higher risk during short saphenous vein surgery. On the other hand, the tibial nerve is located more medially and is less susceptible to injury in this area.
Anatomy of the Popliteal Fossa
The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.
The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.
Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
A 32-year-old arrives at the emergency department with a stab wound to the femoral artery. He has a history of intravenous drug use.
Due to poor vein quality, peripheral cannulation under ultrasound guidance is not feasible. Intraosseous access has been established, but additional access is required to administer large volume transfusions.
To obtain access to a vessel that runs anterior to the medial malleolus, the consultant has decided to perform a venous cutdown.
Which vessel will be accessed through this procedure?Your Answer:
Correct Answer: Long saphenous vein
Explanation:The correct answer is the long saphenous vein, which passes in front of the medial malleolus and is commonly used for venous cutdown procedures. This vein is the largest vessel in the superficial venous system and is formed from the dorsal venous arch of the foot. During a venous cutdown, the skin is opened up to expose the vessel, allowing for cannulation under direct vision.
The anterior tibial vein, fibular vein, and posterior tibial vein are all incorrect answers. The anterior tibial vein is part of the deep venous system and arises from the dorsal venous arch, while the fibular vein forms from the plantar veins of the foot and drains into the posterior tibial vein. The posterior tibial vein also arises from the plantar veins of the foot but ascends posterior to the medial malleolus.
The Anatomy of Saphenous Veins
The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.
On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.
Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Incorrect
-
A 63-year-old woman comes to a vascular clinic complaining of varicosities in the area supplied by the short saphenous vein.
Into which vessel does this vein directly empty?Your Answer:
Correct Answer: Popliteal vein
Explanation:The correct answer is that the short saphenous vein passes posterior to the lateral malleolus and ascends between the two heads of the gastrocnemius muscle to empty directly into the popliteal vein. The long saphenous vein drains directly into the femoral vein and does not receive blood from the short saphenous vein. The dorsal venous arch drains the foot into the short and great saphenous veins but does not receive blood from either. The posterior tibial vein is part of the deep venous system but does not directly receive the short saphenous vein.
The Anatomy of Saphenous Veins
The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.
On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.
Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
John, a 67-year-old male, is brought to the emergency department by ambulance. The ambulance crew explains that the patient has emesis, homonymous hemianopia, weakness of left upper and lower limb, and dysphasia. He makes the healthcare professionals aware he has a worsening headache.
He has a past medical history of atrial fibrillation for which he is taking warfarin. His INR IS 4.3 despite his target range of 2-3.
A CT is ordered and the report suggests the anterior cerebral artery is the affected vessel.
Which areas of the brain can be affected with a haemorrhage stemming of this artery?Your Answer:
Correct Answer: Frontal and parietal lobes
Explanation:The frontal and parietal lobes are partially supplied by the anterior cerebral artery, which is a branch of the internal carotid artery. Specifically, it mainly provides blood to the anteromedial region of these lobes.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Incorrect
-
The venous drainage of the heart is aided by the Thebesian veins. To which primary structure do they drain?
Your Answer:
Correct Answer: Atrium
Explanation:The surface of the heart is covered by numerous small veins known as thebesian veins, which drain directly into the heart, typically into the atrium.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
An 80-year-old man is admitted to the acute medical ward after experiencing a myocardial infarction. During examination, it is discovered that his heart rate is 40 beats per minute. The consultant explains that this is due to damage to the conduction pathways between the sinoatrial and atrioventricular (AV) node, resulting in the AV node pacing his ventricles exclusively.
In most patients, what is the blood supply to the AV node?Your Answer:
Correct Answer: Right coronary artery
Explanation:The AV node is typically supplied by the right coronary artery in right-dominant hearts, while in left-dominant hearts it is supplied by the left circumflex artery. The left circumflex artery also supplies the left atrium and some of the left ventricle, while the right marginal artery supplies the right ventricle, the posterior descending artery supplies the posterior third of the interventricular septum, and the left anterior descending artery supplies the left ventricle.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Incorrect
-
An individual in their mid-20s is identified to have a superior vena cava on the left side. What is the most probable route for blood from this system to reach the heart?
Your Answer:
Correct Answer: Via the coronary sinus
Explanation:The Superior Vena Cava: Anatomy, Relations, and Developmental Variations
The superior vena cava (SVC) is a large vein that drains blood from the head and neck, upper limbs, thorax, and part of the abdominal walls. It is formed by the union of the subclavian and internal jugular veins, which then join to form the right and left brachiocephalic veins. The SVC is located in the anterior margins of the right lung and pleura, and is related to the trachea and right vagus nerve posteromedially, and the posterior aspects of the right lung and pleura posterolaterally. The pulmonary hilum is located posteriorly, while the right phrenic nerve and pleura are located laterally on the right side, and the brachiocephalic artery and ascending aorta are located laterally on the left side.
Developmental variations of the SVC are recognized, including anomalies of its connection and interruption of the inferior vena cava (IVC) in its abdominal course. In some individuals, a persistent left-sided SVC may drain into the right atrium via an enlarged orifice of the coronary sinus, while in rare cases, the left-sided vena cava may connect directly with the superior aspect of the left atrium, usually associated with an un-roofing of the coronary sinus. Interruption of the IVC may occur in patients with left-sided atrial isomerism, with drainage achieved via the azygos venous system.
Overall, understanding the anatomy, relations, and developmental variations of the SVC is important for medical professionals in diagnosing and treating related conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Incorrect
-
A study investigates a novel diagnostic test for myocardial infarction (MI) in elderly patients. What metric would indicate the proportion of elderly patients without MI who received a negative test result?
Your Answer:
Correct Answer: Specificity
Explanation:The Specificity, Negative Predictive Value, Sensitivity, and Positive Predictive Value of a Medical Test
Medical tests are designed to accurately identify the presence or absence of a particular condition. In evaluating the effectiveness of a medical test, several measures are used, including specificity, negative predictive value, sensitivity, and positive predictive value. Specificity refers to the number of individuals without the condition who are accurately identified as such by the test. On the other hand, sensitivity refers to the number of individuals with the condition who are correctly identified by the test.
The negative predictive value of a medical test refers to the proportion of true negatives who are correctly identified by the test. This means that the test accurately identifies individuals who do not have the condition. The positive predictive value, on the other hand, refers to the proportion of true positives who are correctly identified by the test. This means that the test accurately identifies individuals who have the condition.
In summary, the specificity, negative predictive value, sensitivity, and positive predictive value of a medical test is crucial in evaluating its effectiveness in accurately identifying the presence or absence of a particular condition. These measures help healthcare professionals make informed decisions about patient care and treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Incorrect
-
A 32-year-old man is shot in the postero-inferior aspect of his thigh. What structure is located at the most lateral aspect of the popliteal fossa?
Your Answer:
Correct Answer: Common peroneal nerve
Explanation:The structures found in the popliteal fossa, listed from medial to lateral, include the popliteal artery, popliteal vein, tibial nerve, and common peroneal nerve. The sural nerve, which is a branch of the tibial nerve, typically originates at the lower part of the popliteal fossa, but its location may vary.
Anatomy of the Popliteal Fossa
The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.
The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.
Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 21
Incorrect
-
A 22-year-old man was admitted earlier in the day with a fractured fibula following a skateboarding accident. He underwent surgical repair but has suddenly developed a tachycardia on the recovery ward. His vital signs reveal a heart rate of 170 beats/minute, respiratory rate of 20 breaths/minute, and blood pressure of 80/55 mmHg. His ECG shows ventricular tachycardia. The physician decides to perform synchronised DC cardioversion.
What is the most appropriate course of action for this patient?Your Answer:
Correct Answer: DC cardioversion shock synchronised to the ECG R wave
Explanation:When a patient displays adverse features such as shock, syncope, heart failure, or myocardial ischaemia while in ventricular tachycardia, electrical cardioversion synchronized to the R wave is the recommended treatment. If the patient does not respond to up to three synchronized DC shocks, it is important to seek expert help and administer 300mg of IV adenosine. Administering IV fluids would not be an appropriate management choice as it would not affect the patient’s cardiac rhythm.
Cardioversion for Atrial Fibrillation
Cardioversion may be used in two scenarios for atrial fibrillation (AF): as an emergency if the patient is haemodynamically unstable, or as an elective procedure where a rhythm control strategy is preferred. Electrical cardioversion is synchronised to the R wave to prevent delivery of a shock during the vulnerable period of cardiac repolarisation when ventricular fibrillation can be induced.
In the elective scenario for rhythm control, the 2014 NICE guidelines recommend offering rate or rhythm control if the onset of the arrhythmia is less than 48 hours, and starting rate control if it is more than 48 hours or is uncertain.
If the AF is definitely of less than 48 hours onset, patients should be heparinised. Patients who have risk factors for ischaemic stroke should be put on lifelong oral anticoagulation. Otherwise, patients may be cardioverted using either electrical or pharmacological methods.
If the patient has been in AF for more than 48 hours, anticoagulation should be given for at least 3 weeks prior to cardioversion. An alternative strategy is to perform a transoesophageal echo (TOE) to exclude a left atrial appendage (LAA) thrombus. If excluded, patients may be heparinised and cardioverted immediately. NICE recommends electrical cardioversion in this scenario, rather than pharmacological.
If there is a high risk of cardioversion failure, it is recommended to have at least 4 weeks of amiodarone or sotalol prior to electrical cardioversion. Following electrical cardioversion, patients should be anticoagulated for at least 4 weeks. After this time, decisions about anticoagulation should be taken on an individual basis depending on the risk of recurrence.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 22
Incorrect
-
A 63-year-old man comes to the emergency department complaining of severe crushing chest pain that radiates to his jaw and is accompanied by profuse sweating and nausea. Upon conducting an ECG, you observe ST-segment elevation in leads V2-V4, leading you to diagnose an anteroseptal ST-elevation myocardial infarction (MI). Can you identify the coronary vessel that runs along the interventricular septum on the anterior surface of the heart to reach the apex?
Your Answer:
Correct Answer: Left anterior descending artery
Explanation:The coronary arteries supply blood to the heart muscle, and blockages in these arteries can lead to heart attacks. The right coronary artery supplies the right side of the heart and is often associated with arrhythmias when blocked. The left circumflex artery supplies the left side of the heart and can cause lateral, posterior, or anterolateral heart attacks when blocked. The right marginal artery arises from the right coronary artery and travels along the bottom of the heart, while the left marginal artery arises from the left circumflex artery and travels along the curved edge of the heart.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 23
Incorrect
-
A 65-year-old man presents to the GP for a routine hypertension check-up. He has a medical history of hypertension, ischaemic heart disease, osteoarthritis, rheumatic fever and COPD.
During the physical examination, the GP hears a mid-late diastolic murmur that intensifies during expiration. The GP suspects that the patient may have mitral stenosis.
What is the primary cause of this abnormality?Your Answer:
Correct Answer: Rheumatic fever
Explanation:Understanding Mitral Stenosis
Mitral stenosis is a condition where the mitral valve, which controls blood flow from the left atrium to the left ventricle, becomes obstructed. This leads to an increase in pressure within the left atrium, pulmonary vasculature, and right side of the heart. The most common cause of mitral stenosis is rheumatic fever, but it can also be caused by other rare conditions such as mucopolysaccharidoses, carcinoid, and endocardial fibroelastosis.
Symptoms of mitral stenosis include dyspnea, hemoptysis, a mid-late diastolic murmur, a loud S1, and a low volume pulse. Severe cases may also present with an increased length of murmur and a closer opening snap to S2. Chest x-rays may show left atrial enlargement, while echocardiography can confirm a cross-sectional area of less than 1 sq cm for a tight mitral stenosis.
Management of mitral stenosis depends on the severity of the condition. Asymptomatic patients are monitored with regular echocardiograms, while symptomatic patients may undergo percutaneous mitral balloon valvotomy or mitral valve surgery. Patients with associated atrial fibrillation require anticoagulation, with warfarin currently recommended for moderate/severe cases. However, there is an emerging consensus that direct-acting anticoagulants may be suitable for mild cases with atrial fibrillation.
Overall, understanding mitral stenosis is important for proper diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 24
Incorrect
-
Which one of the following statements relating to the pharmacology of warfarin is false?
Your Answer:
Correct Answer: Warfarin has a large volume of distribution
Explanation:To impair fibrin formation, warfarin impacts the carboxylation of glutamic acid residues in clotting factors 2, 7, 9, and 10. Factor 2 has the lengthiest half-life of around 60 hours, so it may take up to three days for warfarin to take full effect. Warfarin is protein-bound, resulting in a small distribution volume.
Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects
Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.
Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.
Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.
In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 25
Incorrect
-
A 78-year-old ex-smoker comes to the clinic complaining of chest discomfort and shortness of breath. He had a history of ST-elevation myocardial infarction 10 days ago, which was treated with thrombolysis. During the examination, a high-pitch holosystolic murmur is heard at the apex. The ECG shows widespread ST elevation. Unfortunately, the patient experiences cardiac arrest and passes away. What is the probable histological finding in his heart?
Your Answer:
Correct Answer: Macrophages and granulation tissue at margins
Explanation:The histology findings of a myocardial infarction (MI) vary depending on the time elapsed since the event. Within the first 24 hours, there is evidence of early coagulative necrosis, neutrophils, wavy fibers, and hypercontraction of myofibrils. This stage is associated with a high risk of ventricular arrhythmia, heart failure, and cardiogenic shock.
Between 1-3 days post-MI, there is extensive coagulative necrosis and an influx of neutrophils, which can lead to fibrinous pericarditis. From 3-14 days post-MI, macrophages and granulation tissue are present at the margins, and there is a high risk of complications such as free wall rupture (which can cause mitral regurgitation), papillary muscle rupture, and left ventricular pseudoaneurysm.
After 2 weeks to several months, the scar tissue has contracted and is complete. This stage is associated with Dressler syndrome, heart failure, arrhythmias, and mural thrombus. It is important to note that the risk of complications decreases as time passes, but long-term management and monitoring are still necessary for patients who have experienced an MI.
Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 26
Incorrect
-
A woman with longstanding angina visits her doctor and reports persistent symptoms. The patient was previously prescribed a calcium channel blocker, but due to her asthma, a beta blocker cannot be prescribed. The doctor decides to prescribe ivabradine. What is the site of action of ivabradine in the heart?
Your Answer:
Correct Answer: Sinoatrial node
Explanation:The mechanism of action of Ivabradine in heart failure involves targeting the If ion current present in the sinoatrial node to lower the heart rate.
Ivabradine: An Anti-Anginal Drug
Ivabradine is a type of medication used to treat angina by reducing the heart rate. It works by targeting the If (‘funny’) ion current, which is found in high levels in the sinoatrial node. By doing so, it decreases the activity of the cardiac pacemaker.
However, Ivabradine is not without its side effects. Many patients report experiencing visual disturbances, such as luminous phenomena, as well as headaches, bradycardia, and heart block.
Despite its potential benefits, there is currently no evidence to suggest that Ivabradine is superior to existing treatments for stable angina. As with any medication, it is important to weigh the potential benefits against the risks and side effects before deciding whether or not to use it.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 27
Incorrect
-
Linda is a 54-year-old woman who was admitted with a 3-day history of worsening shortness of breath. On her last admission 6 months ago, she was treated for a ST-elevation myocardial infarction (STEMI).
She does not experience any significant chest pain. A chest X-ray shows minor bibasal consolidation suggestive of mild pulmonary oedema. Her blood tests are as follow:
Na+ 138 mmol/L (135 - 145)
K+ 4.0 mmol/L (3.5 - 5.0)
Urea 5.8 mmol/L (2.0 - 7.0)
Creatinine 100 µmol/L (55 - 120)
A 12-lead electrocardiogram shows sinus rhythm. An echocardiogram shows reduced left ventricular (LV) contraction with an LV ejection fraction of 40%.
Which of the following treatments should be prescribed to reduce mortality?Your Answer:
Correct Answer: Ramipril
Explanation:For patients diagnosed with heart failure with reduced LVEF, the initial treatment should involve administering a beta blocker and an ACE inhibitor. In the case of the patient in question, the symptoms and echocardiogram results indicate the onset of LV failure, which is likely due to their previous STEMI. Therefore, the recommended course of action is to prescribe an ACE inhibitor and beta-blocker as the primary therapy. This will help alleviate the symptoms of heart failure by reducing the after-load on the heart.
Chronic heart failure can be managed through drug treatment, according to updated guidelines issued by NICE in 2018. While loop diuretics are useful in managing fluid overload, they do not reduce mortality in the long term. The first-line treatment for all patients is a combination of an ACE-inhibitor and a beta-blocker, with clinical judgement used to determine which one to start first. Aldosterone antagonists are recommended as second-line treatment, but potassium levels should be monitored as both ACE inhibitors and aldosterone antagonists can cause hyperkalaemia. Third-line treatment should be initiated by a specialist and may include ivabradine, sacubitril-valsartan, hydralazine in combination with nitrate, digoxin, and cardiac resynchronisation therapy. Other treatments include annual influenzae and one-off pneumococcal vaccines. Those with asplenia, splenic dysfunction, or chronic kidney disease may require a booster every 5 years.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 28
Incorrect
-
A 75-year-old man arrives at the emergency department complaining of lightheadedness and difficulty breathing. Upon examination, his ECG reveals supraventricular tachycardia, which may be caused by an irregularity in the cardiac electrical activation sequence. He is successfully cardioverted to sinus rhythm.
What is the anticipated sequence of his cardiac electrical activation following the procedure?Your Answer:
Correct Answer: SA node- atria- AV node- Bundle of His- right and left bundle branches- Purkinje fibres
Explanation:The correct order of cardiac electrical activation is as follows: SA node, atria, AV node, Bundle of His, right and left bundle branches, and Purkinje fibers. Understanding this sequence is crucial as it is directly related to interpreting ECGs.
Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 29
Incorrect
-
A toddler is brought to the hospital at 18 months of age with symptoms of increased work of breathing and difficulty while feeding. On examination, a continuous 'machinery' murmur is heard and is loudest at the left sternal edge. The cardiologist prescribes a dose of indomethacin. What is the mechanism of action of indomethacin?
The baby was born prematurely at 36 weeks via an emergency cesarean section. Despite the early delivery, the baby appeared healthy and was given a dose of Vitamin K soon after birth. The mother lived in a cottage up in the mountains and was discharged the next day with her happy, healthy baby. However, six weeks later, the baby was brought back to the hospital with concerning symptoms.Your Answer:
Correct Answer: Prostaglandin synthase inhibitor
Explanation:Indomethacin is a medication that hinders the production of prostaglandins in infants with patent ductus arteriosus by inhibiting the activity of COX enzymes. On the other hand, bosentan, an endothelin receptor antagonist, is utilized to treat pulmonary hypertension by blocking the vasoconstricting effect of endothelin, leading to vasodilation. Although endothelin causes vasoconstriction by acting on endothelin receptors, it is not employed in managing PDA. Adenosine receptor antagonists like theophylline and caffeine are also not utilized in PDA management.
Understanding Patent Ductus Arteriosus
Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.
This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.
The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 30
Incorrect
-
A 29-year-old man is brought to the emergency surgical theatre with multiple stab wounds to his abdomen and is hypotensive despite resuscitative measures. During a laparotomy, a profusely bleeding vessel is found at a certain level of the lumbar vertebrae. The vessel is identified as the testicular artery and is ligated to stop the bleeding. At which vertebral level was the artery identified?
Your Answer:
Correct Answer: L2
Explanation:The testicular arteries originate from the abdominal aorta at the level of the second lumbar vertebrae (L2).
The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)