-
Question 1
Incorrect
-
A 65-year-old man presents to his doctor with a complaint of speech difficulty that has been ongoing for two months. He reports difficulty in producing speech and frequently experiences word-finding difficulties, but has no trouble comprehending written or spoken language.
To investigate the cause of his symptoms, a CT scan of the head is ordered.
Based on his symptoms, where would you anticipate a lesion to be located?Your Answer: Left superior temporal lobe
Correct Answer: Left inferior frontal gyrus
Explanation:Broca’s aphasia results from a lesion in the inferior frontal gyrus, specifically in Broca’s area. This area is connected to Wernicke’s area by the arcuate fasciculus and is responsible for expressive language functions. Lesions to other areas, such as the angular gyrus or fusiform gyrus, would not cause expressive aphasia. Wernicke’s area, located in the superior temporal lobe, is responsible for receptive language functions and a lesion here would result in a receptive aphasia. The sylvian fissure separates the frontal and temporal lobes and a lesion here may cause seizures but not aphasia.
Types of Aphasia: Understanding the Different Forms of Language Impairment
Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.
Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.
Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.
Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 2
Incorrect
-
An 8-year-old boy arrives at the emergency department complaining of weakness in his limbs, difficulty swallowing, and a general feeling of malaise. These symptoms began after he recently had an upper respiratory tract infection. Upon examination, it is noted that his neck muscles, as well as both his proximal and distal arm and leg muscles, are weak. Additionally, his tendon reflexes are reduced bilaterally in both his upper and lower limbs, but his sensation is only mildly affected. What is the most probable underlying condition causing these symptoms?
Your Answer: Polymyositis
Correct Answer: Acute inflammatory demyelinating polyneuropathy (Guillain-Barre syndrome)
Explanation:Guillain-Barre Syndrome: A Breakdown of its Features
Guillain-Barre syndrome is a condition that occurs when the immune system attacks the peripheral nervous system, resulting in demyelination. This is often triggered by an infection, with Campylobacter jejuni being a common culprit. In the initial stages of the illness, around 65% of patients experience back or leg pain. However, the characteristic feature of Guillain-Barre syndrome is progressive, symmetrical weakness of all limbs, with the legs being affected first in an ascending pattern. Reflexes are reduced or absent, and sensory symptoms tend to be mild. Other features may include a history of gastroenteritis, respiratory muscle weakness, cranial nerve involvement, diplopia, bilateral facial nerve palsy, oropharyngeal weakness, and autonomic involvement, which can lead to urinary retention and diarrhea. Less common findings may include papilloedema, which is thought to be secondary to reduced CSF resorption. To diagnose Guillain-Barre syndrome, a lumbar puncture may be performed, which can reveal a rise in protein with a normal white blood cell count (albuminocytologic dissociation) in 66% of cases. Nerve conduction studies may also be conducted, which can show decreased motor nerve conduction velocity due to demyelination, prolonged distal motor latency, and increased F wave latency.
-
This question is part of the following fields:
- Neurological System
-
-
Question 3
Correct
-
A patient in his mid-50s visits his physician with complaints of difficulty in chewing and tongue movement, leading to eating problems. The patient also reports severe headaches, and the symptoms have been worsening gradually. The doctor decides to conduct an MRI scan to diagnose the condition.
What is the likely location of the lesion within the skull that the doctor will look for?Your Answer: Hypoglossal canal
Explanation:The hypoglossal nerve travels through the hypoglossal canal, which is why damage to this nerve can cause symptoms related to tongue movement and reflexes such as chewing, sucking, and swallowing. The superior orbital fissure is not the correct answer as the nerves that pass through it do not provide motor innervation to the tongue, and the patient in the question does not present with any eye-related symptoms. The jugular foramen and foramen ovale are also incorrect as they do not exclusively house the hypoglossal nerve, and the nerves that pass through them do not provide motor innervation to the tongue. The foramen rotundum is also not the correct answer as only the maxillary branch of the trigeminal nerve passes through it, which does not innervate the tongue.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 4
Correct
-
You are working on a medical ward and you are asked to review a patient for painful red eyes. He is a 55-year-old man who is a current inpatient being investigated for unstable angina. His eyes have been intermittently gritty and painful for several months. He denies itch, decreased vision or recent coryzal symptoms. On examination, you find bilaterally injected conjunctivae, low tear film volume and diffuse corneal staining with fluorescein dye. His lid margin appears crusted with misdirected eyelashes.
What is the most appropriate first-line treatment?Your Answer: Lid hygiene
Explanation:Dry eye is a prevalent chronic condition that affects a significant portion of the population. The primary treatment for dry eye is lid hygiene.
When patients present with bilateral eye discomfort and redness, they often have both dry eye syndrome and blepharitis. Dry eye syndrome is a chronic condition that results in poor-quality tear film production, leading to the rapid breakdown of the protective tear layer. This can cause irritation due to small particles or evaporation from the corneal surface. While the cause of the disease is unclear, meibomian gland dysfunction may contribute to a significant portion of the disease burden.
Timolol is a topical beta-blocker that is typically used to reduce high intraocular pressure in conditions such as open-angle glaucoma. It is not an appropriate treatment for dry eye.
Ibuprofen is a non-steroidal anti-inflammatory drug that has little to no role in managing dry eye or blepharitis. There is no ocular topical preparation of ibuprofen.
Cyclizine is an antiemetic medication from the antihistamine family. It is not commonly used to manage ocular conditions.
Lid hygiene is a safe and effective first-line treatment for both dry eye and blepharitis. Daily warm compresses and gentle massage can help improve and control symptoms as long as the practice is continued.
Understanding Dry Eyes
Dry eye syndrome is a condition that causes discomfort in both eyes, with symptoms such as dryness, grittiness, and soreness that worsen throughout the day. Wind exposure can also cause watering of the eyes. If the symptoms are worse upon waking up, with eyelids sticking together, and redness of the eyelids, it may be caused by Meibomian gland dysfunction. In some cases, dry eye syndrome can lead to complications such as conjunctivitis or corneal ulceration, which can cause severe pain, photophobia, redness, and loss of visual acuity.
Although there may be no abnormalities found during examination, eyelid hygiene is the most appropriate management step for dry eye syndrome. This helps to control blepharitis, which is a common condition associated with dry eye syndrome. By understanding the symptoms and appropriate management steps, individuals with dry eye syndrome can find relief and improve their overall eye health.
-
This question is part of the following fields:
- Neurological System
-
-
Question 5
Correct
-
A 45-year-old male patient presents with choreiform movements that he is unable to control or cease. During the consultation, you inquire about his family history and discover that his father experienced similar symptoms at a slightly later age. Based on this information, what genetic phenomenon is likely to have taken place between the patient and his father?
Your Answer: Anticipation
Explanation:Anticipation may be observed in Huntington’s disease due to its nature as a trinucleotide repeat disorder. The disease is caused by an autosomal dominant gene with CAG repeats in exon 1 of the Huntingtin gene. The number of CAG repeats is indicative of the severity of the disease, with individuals having 36 to 39 repeats potentially developing symptoms, while those with 40 or more repeats almost always develop the disorder. HD can occur in individuals with 36 to 120 CAG repeats.
Anticipation is observed as the number of CAG repeats increases between generations. Offspring of individuals with 27 to 35 CAG repeats are at risk of developing HD, even though the parent does not suffer from the disease. Additionally, higher numbers of CAG repeats tend to cause HD to manifest at earlier ages, resulting in younger generations being affected by the disease.
Huntington’s disease is a genetic disorder that causes progressive and incurable neurodegeneration. It is inherited in an autosomal dominant manner and is caused by a trinucleotide repeat expansion of CAG in the huntingtin gene on chromosome 4. This can result in the phenomenon of anticipation, where the disease presents at an earlier age in successive generations. The disease leads to the degeneration of cholinergic and GABAergic neurons in the striatum of the basal ganglia, which can cause a range of symptoms.
Typically, symptoms of Huntington’s disease develop after the age of 35 and can include chorea, personality changes such as irritability, apathy, and depression, intellectual impairment, dystonia, and saccadic eye movements. Unfortunately, there is currently no cure for Huntington’s disease, and it usually results in death around 20 years after the initial symptoms develop.
-
This question is part of the following fields:
- Neurological System
-
-
Question 6
Correct
-
The following statements about the femoral nerve are all true except for one. Which statement is incorrect?
Your Answer: It supplies adductor longus
Explanation:The obturator nerve supplies the adductor longus.
The femoral nerve is a nerve that originates from the spinal roots L2, L3, and L4. It provides innervation to several muscles in the thigh, including the pectineus, sartorius, quadriceps femoris, and vastus lateralis, medialis, and intermedius. Additionally, it branches off into the medial cutaneous nerve of the thigh, saphenous nerve, and intermediate cutaneous nerve of the thigh. The femoral nerve passes through the psoas major muscle and exits the pelvis by going under the inguinal ligament. It then enters the femoral triangle, which is located lateral to the femoral artery and vein.
To remember the femoral nerve’s supply, a helpful mnemonic is don’t MISVQ scan for PE. This stands for the medial cutaneous nerve of the thigh, intermediate cutaneous nerve of the thigh, saphenous nerve, vastus, quadriceps femoris, and sartorius, with the addition of the pectineus muscle. Overall, the femoral nerve plays an important role in the motor and sensory functions of the thigh.
-
This question is part of the following fields:
- Neurological System
-
-
Question 7
Correct
-
A 33-year-old woman visits an ophthalmology clinic complaining of reduced sensation in her left eye for the past 2 months. She first noticed it while putting on contact lenses. Her medical history includes multiple facial fractures due to a traumatic equestrian event that occurred 2 months ago.
During the examination, the corneal reflex is absent in her left eye, while her right eye shows bilateral tearing and blinking. There is no facial asymmetry, and the strength of the facial muscles is normal on both sides.
Which structure is most likely to have been affected by the trauma?Your Answer: Superior orbital fissure
Explanation:The ophthalmic nerve passes through the superior orbital fissure, which is the correct answer. This nerve is responsible for the afferent limb of the corneal reflex, while the efferent limb is controlled by the facial nerve. Since the patient has no facial asymmetry and normal power, it suggests that the lesion affects the afferent limb controlled by the ophthalmic nerve.
The other options are incorrect. The foramen rotundum transmits the mandibular nerve, the internal acoustic meatus transmits the facial nerve, the infraorbital foramen transmits the nasopalatine nerve, and the optic canal transmits the optic nerve. None of these nerves play a role in the corneal reflex.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 8
Incorrect
-
Which of the following is accountable for the production and discharge of calcitonin?
Your Answer: Adrenal glands
Correct Answer: Thyroid gland
Explanation:The thyroid gland releases calcitonin, which has an opposing effect to PTH.
Maintaining Calcium Balance in the Body
Calcium ions are essential for various physiological processes in the body, and the largest store of calcium is found in the skeleton. The levels of calcium in the body are regulated by three hormones: parathyroid hormone (PTH), vitamin D, and calcitonin.
PTH increases calcium levels and decreases phosphate levels by increasing bone resorption and activating osteoclasts. It also stimulates osteoblasts to produce a protein signaling molecule that activates osteoclasts, leading to bone resorption. PTH increases renal tubular reabsorption of calcium and the synthesis of 1,25(OH)2D (active form of vitamin D) in the kidney, which increases bowel absorption of calcium. Additionally, PTH decreases renal phosphate reabsorption.
Vitamin D, specifically the active form 1,25-dihydroxycholecalciferol, increases plasma calcium and plasma phosphate levels. It increases renal tubular reabsorption and gut absorption of calcium, as well as osteoclastic activity. Vitamin D also increases renal phosphate reabsorption in the proximal tubule.
Calcitonin, secreted by C cells of the thyroid, inhibits osteoclast activity and renal tubular absorption of calcium.
Although growth hormone and thyroxine play a small role in calcium metabolism, the primary regulation of calcium levels in the body is through PTH, vitamin D, and calcitonin. Maintaining proper calcium balance is crucial for overall health and well-being.
-
This question is part of the following fields:
- Neurological System
-
-
Question 9
Incorrect
-
Samantha is a 75-year-old woman who is currently recovering in hospital following a stroke. Her MRI scan report says there is evidence of ischaemic damage to the superior optic radiation within the right temporal lobe.
What type of visual impairment is Samantha likely experiencing?Your Answer: Left inferior homonymous quadrantanopia
Correct Answer: Right superior homonymous quadrantanopia
Explanation:Lesions in the temporal lobe inferior optic radiations are responsible for superior homonymous quadrantanopias.
If the left temporal lobe is damaged, the resulting visual field defect would be in the right side. Specific damage to the inferior optic radiation would cause a superior homonymous quadrantanopia.
Damage to the right inferior optic radiation would lead to a left superior homonymous quadrantanopia.
A right inferior homonymous quadrantanopia would occur if the left superior optic radiation is damaged.
If the left occipital lobe is damaged, a right homonymous hemianopia would result.
Understanding Visual Field Defects
Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.
When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.
Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.
Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.
-
This question is part of the following fields:
- Neurological System
-
-
Question 10
Correct
-
Which nerve provides feeling to the nail bed of the middle finger?
Your Answer: Median
Explanation:Anatomy and Function of the Median Nerve
The median nerve is a nerve that originates from the lateral and medial cords of the brachial plexus. It descends lateral to the brachial artery and passes deep to the bicipital aponeurosis and the median cubital vein at the elbow. The nerve then passes between the two heads of the pronator teres muscle and runs on the deep surface of flexor digitorum superficialis. Near the wrist, it becomes superficial between the tendons of flexor digitorum superficialis and flexor carpi radialis, passing deep to the flexor retinaculum to enter the palm.
The median nerve has several branches that supply the upper arm, forearm, and hand. These branches include the pronator teres, flexor carpi radialis, palmaris longus, flexor digitorum superficialis, flexor pollicis longus, and palmar cutaneous branch. The nerve also provides motor supply to the lateral two lumbricals, opponens pollicis, abductor pollicis brevis, and flexor pollicis brevis muscles, as well as sensory supply to the palmar aspect of the lateral 2 ½ fingers.
Damage to the median nerve can occur at the wrist or elbow, resulting in various symptoms such as paralysis and wasting of thenar eminence muscles, weakness of wrist flexion, and sensory loss to the palmar aspect of the fingers. Additionally, damage to the anterior interosseous nerve, a branch of the median nerve, can result in loss of pronation of the forearm and weakness of long flexors of the thumb and index finger. Understanding the anatomy and function of the median nerve is important in diagnosing and treating conditions that affect this nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 11
Incorrect
-
A 35-year-old woman comes to the clinic complaining of worsening tingling sensation in her legs and difficulty maintaining balance. She has no significant medical history.
During the examination, it is observed that her lower limbs have significantly reduced proprioception and vibration sense. She also experiences distal paraesthesia. Additionally, her knee reflexes are brisk.
A blood film is taken, which shows macrocytic anaemia and hypersegmented neutrophils.
Based on the symptoms, what parts of the spinal cord are likely to be affected?Your Answer: Spinocerebellar tract and dorsal column
Correct Answer: Dorsal column and lateral corticospinal tract
Explanation:Subacute combined degeneration of the spinal cord affects the dorsal columns and lateral corticospinal tracts, as seen in this case with B12 deficiency. The loss of proprioception and vibration sense on examination, as well as brisk knee reflexes, are consistent with an upper motor neuron lesion finding. The anterior corticospinal tract, spinocerebellar tract, and spinothalamic tract are not typically affected in this condition. Therefore, the correct answer is the dorsal columns and lateral corticospinal tracts.
Subacute Combined Degeneration of Spinal Cord
Subacute combined degeneration of spinal cord is a condition that occurs due to a deficiency of vitamin B12. The dorsal columns and lateral corticospinal tracts are affected, leading to the loss of joint position and vibration sense. The first symptoms are usually distal paraesthesia, followed by the development of upper motor neuron signs in the legs, such as extensor plantars, brisk knee reflexes, and absent ankle jerks. If left untreated, stiffness and weakness may persist.
This condition is a serious concern and requires prompt medical attention. It is important to maintain a healthy diet that includes sufficient amounts of vitamin B12 to prevent the development of subacute combined degeneration of spinal cord.
-
This question is part of the following fields:
- Neurological System
-
-
Question 12
Incorrect
-
A 35-year-old male patient comes to you with a right eye that is looking outward and downward, along with ptosis of the same eye. Which cranial nerve lesion is the most probable cause of this presentation?
Your Answer: Abducens
Correct Answer: Oculomotor
Explanation:The oculomotor nerve is responsible for innervating all the extra-ocular muscles of the eye, except for the lateral rectus and superior oblique. If this nerve is damaged, it can result in unopposed action of the lateral rectus and superior oblique muscles, leading to a distinct ‘down and out’ gaze. Additionally, the oculomotor nerve controls the levator palpebrae superioris, so a lesion can cause ptosis. Furthermore, the nerve carries parasympathetic fibers that constrict the pupil, so compression of the nerve can result in a dilated pupil (mydriasis).
Disorders of the Oculomotor System: Nerve Path and Palsy Features
The oculomotor system is responsible for controlling eye movements and pupil size. Disorders of this system can result in various nerve path and palsy features. The oculomotor nerve has a large nucleus at the midbrain and its fibers pass through the red nucleus and the pyramidal tract, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience ptosis, eye down and out, and an inability to move the eye superiorly, inferiorly, or medially. The pupil may also become fixed and dilated.
The trochlear nerve has the longest intracranial course and is the only nerve to exit the dorsal aspect of the brainstem. Its nucleus is located at the midbrain and it passes between the posterior cerebral and superior cerebellar arteries, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience vertical diplopia (diplopia on descending the stairs) and an inability to look down and in.
The abducens nerve has its nucleus in the mid pons and is responsible for the convergence of eyes in primary position. When this nerve is affected, patients may experience lateral diplopia towards the side of the lesion and the eye may deviate medially. Understanding the nerve path and palsy features of the oculomotor system can aid in the diagnosis and treatment of disorders affecting this important system.
-
This question is part of the following fields:
- Neurological System
-
-
Question 13
Correct
-
A 50-year-old woman complains of increasing diplopia that worsens as the day progresses. She has been experiencing double vision for a few weeks now, and notes that it is more pronounced in the evenings and absent in the mornings. Upon further inquiry, the patient reports that her diplopia improves after resting her eyes.
What is the most probable diagnosis?Your Answer: Myasthenia gravis
Explanation:The main characteristic of myasthenia gravis is muscle weakness that worsens with use and improves with rest, without causing pain. This condition often affects the oculomotor nerve and is more prevalent in women. Diagnosis is typically confirmed through single fibre electromyography, which has a high level of sensitivity.
While migraines can also cause double vision, they usually come with additional symptoms such as pain and nausea. A classic migraine may include a visual aura or sensitivity to light. Additionally, the patient’s age of 45 is older than the typical age of onset for migraines.
Diabetic neuropathy can also lead to double vision, but it typically presents with a loss of sensation in the hands and feet. There is no indication that this patient has diabetes.
Multiple sclerosis often first presents with vision problems affecting the optic nerve. Optic neuritis, for example, can cause pain, central scotoma, and colour vision loss.
Myasthenia gravis is an autoimmune disorder that results in muscle weakness and fatigue, particularly in the eyes, face, neck, and limbs. It is more common in women and is associated with thymomas and other autoimmune disorders. Diagnosis is made through electromyography and testing for antibodies to acetylcholine receptors. Treatment includes acetylcholinesterase inhibitors and immunosuppression, and in severe cases, plasmapheresis or intravenous immunoglobulins may be necessary.
-
This question is part of the following fields:
- Neurological System
-
-
Question 14
Incorrect
-
Can you rephrase this inquiry and adjust the age a bit while maintaining the same paragraph format?
Your Answer: Extensor hallucis longus
Correct Answer: Flexor digitorum brevis
Explanation:The tibial nerve supplies the flexor digitorum.
The common peroneal nerve originates from the dorsal divisions of the sacral plexus, specifically from L4, L5, S1, and S2. This nerve provides sensation to the skin and fascia of the anterolateral surface of the leg and dorsum of the foot, as well as innervating the muscles of the anterior and peroneal compartments of the leg, extensor digitorum brevis, and the knee, ankle, and foot joints. It is located laterally within the sciatic nerve and passes through the lateral and proximal part of the popliteal fossa, under the cover of biceps femoris and its tendon, to reach the posterior aspect of the fibular head. The common peroneal nerve divides into the deep and superficial peroneal nerves at the point where it winds around the lateral surface of the neck of the fibula in the body of peroneus longus, approximately 2 cm distal to the apex of the head of the fibula. It is palpable posterior to the head of the fibula. The nerve has several branches, including the nerve to the short head of biceps, articular branch (knee), lateral cutaneous nerve of the calf, and superficial and deep peroneal nerves at the neck of the fibula.
-
This question is part of the following fields:
- Neurological System
-
-
Question 15
Correct
-
A 25-year-old man is scheduled for a day surgery to remove a sebaceous cyst. However, he has a fear of needles and starts to hyperventilate as the surgeon approaches him with the needle. As a result, he experiences muscular twitching and circumoral paresthesia. What is the most probable reason for this occurrence?
Your Answer: Reduction in ionised calcium levels
Explanation:Maintaining Calcium Balance in the Body
Calcium ions are essential for various physiological processes in the body, and the largest store of calcium is found in the skeleton. The levels of calcium in the body are regulated by three hormones: parathyroid hormone (PTH), vitamin D, and calcitonin.
PTH increases calcium levels and decreases phosphate levels by increasing bone resorption and activating osteoclasts. It also stimulates osteoblasts to produce a protein signaling molecule that activates osteoclasts, leading to bone resorption. PTH increases renal tubular reabsorption of calcium and the synthesis of 1,25(OH)2D (active form of vitamin D) in the kidney, which increases bowel absorption of calcium. Additionally, PTH decreases renal phosphate reabsorption.
Vitamin D, specifically the active form 1,25-dihydroxycholecalciferol, increases plasma calcium and plasma phosphate levels. It increases renal tubular reabsorption and gut absorption of calcium, as well as osteoclastic activity. Vitamin D also increases renal phosphate reabsorption in the proximal tubule.
Calcitonin, secreted by C cells of the thyroid, inhibits osteoclast activity and renal tubular absorption of calcium.
Although growth hormone and thyroxine play a small role in calcium metabolism, the primary regulation of calcium levels in the body is through PTH, vitamin D, and calcitonin. Maintaining proper calcium balance is crucial for overall health and well-being.
-
This question is part of the following fields:
- Neurological System
-
-
Question 16
Correct
-
A 43-year-old male visits his doctor complaining of headaches, nausea, and vomiting that have been worsening when lying down or leaning forwards for the past 3 months. He has no significant medical history and is not taking any medications. Upon undergoing an MRI, multiple suspicious lesions are found along his spinal cord. A biopsy confirms the presence of ependymal cells that have undergone malignant transformation. What is the typical role of these cells?
Your Answer: Cerebrospinal fluid (CSF) production
Explanation:The nervous system is composed of various types of cells, each with their own unique functions. Oligodendroglia cells are responsible for producing myelin in the central nervous system (CNS) and are affected in multiple sclerosis. Schwann cells, on the other hand, produce myelin in the peripheral nervous system (PNS) and are affected in Guillain-Barre syndrome. Astrocytes provide physical support, remove excess potassium ions, help form the blood-brain barrier, and aid in physical repair. Microglia are specialised CNS phagocytes, while ependymal cells provide the inner lining of the ventricles.
In summary, the nervous system is made up of different types of cells, each with their own specific roles. Oligodendroglia and Schwann cells produce myelin in the CNS and PNS, respectively, and are affected in certain diseases. Astrocytes provide physical support and aid in repair, while microglia are specialised phagocytes in the CNS. Ependymal cells line the ventricles. Understanding the functions of these cells is crucial in understanding the complex workings of the nervous system.
-
This question is part of the following fields:
- Neurological System
-
-
Question 17
Correct
-
A 75-year-old man is brought to his family doctor by his wife, who reports that her husband has been misplacing items around the house, such as putting his wallet in the fridge. She also mentions that he has gotten lost on two occasions while trying to find his way home. The man has difficulty remembering recent events but can recall his childhood and early adulthood with clarity. He denies experiencing any visual or auditory hallucinations or issues with his mobility. The wife notes that her husband's behavioral changes have been gradual rather than sudden. A CT scan reveals significant widening of the brain sulci. What is the most likely diagnosis for this man, and what is the underlying pathology?
Your Answer: Extracellular amyloid plaques and intracellular fibrillary tangles
Explanation:Alzheimer’s disease is caused by the deposition of insoluble beta-amyloid protein, leading to the formation of cortical plaques, and abnormal aggregation of the tau protein, resulting in intraneuronal neurofibrillary tangles. This disease is characterized by a gradual onset of memory and behavioral problems, as well as brain atrophy visible on CT scans. Vascular dementia, on the other hand, is caused by multiple ischemic insults to the brain, resulting in a stepwise decline in cognition. Prion disease, such as Creutzfeldt-Jakob disease, is characterized by the presence of insoluble beta-pleated protein sheets. Lacunar infarcts, caused by obstruction of small penetrating arteries in the brain, can be detected by MRI or CT scans. Lewy body dementia is characterized by the presence of intracellular Lewy bodies, along with symptoms of dementia and Parkinson’s disease.
Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.
The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.
Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.
-
This question is part of the following fields:
- Neurological System
-
-
Question 18
Incorrect
-
A 25-year-old woman with an 8-month-old baby is complaining of pain on the radial side of her wrist. She reports that the pain is most severe when she is using her hand to wring clothes or lift objects. Upon examination, there is no visible swelling, but the Finkelstein's test is positive, leading to a diagnosis of de Quervain's tenosynovitis. Can you identify the nerve that innervates the two muscle tendons affected in this condition?
Your Answer: Median nerve
Correct Answer: Posterior interosseous nerve
Explanation:Hand Nerve Innervation
De Quervain’s tenosynovitis, also known as mothers wrist, is a condition with an unknown cause, but some experts believe it may be due to repetitive movements like wringing clothes. The anterior interosseous nerve is a branch of the median nerve that provides innervation to the flexor pollicis longus. On the other hand, the recurrent branch of the median nerve innervates the thenar eminence muscles, which are responsible for flexing and opposing the thumb. These muscles include the flexor pollicis brevis, abductor pollicis brevis, and opponens pollicis.
In contrast, the musculocutaneous nerve does not play a role in thumb movement. Instead, it provides motor supply to the biceps brachii and brachialis muscles, which cause flexion at the elbow joint. Lastly, the ulnar nerve innervates the interossei muscles and lateral two lumbricals of the small muscles of the hand. the innervation of the hand nerves is crucial in diagnosing and treating various hand conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 19
Correct
-
A 50-year-old man suffers a major head trauma and undergoes craniotomy. The bleeding is from the sigmoid sinus, what is the structure it drains into?
Your Answer: Internal jugular vein
Explanation:The internal jugular vein receives drainage from the sigmoid sinus and the inferior petrosal sinus after they merge.
Overview of Cranial Venous Sinuses
The cranial venous sinuses are a series of veins located within the dura mater, the outermost layer of the brain. Unlike other veins in the body, they do not have valves, which can increase the risk of sepsis spreading. These sinuses eventually drain into the internal jugular vein.
There are several cranial venous sinuses, including the superior sagittal sinus, inferior sagittal sinus, straight sinus, transverse sinus, sigmoid sinus, confluence of sinuses, occipital sinus, and cavernous sinus. Each of these sinuses has a specific location and function within the brain.
To better understand the topography of the cranial venous sinuses, it is helpful to visualize them as a map. The superior sagittal sinus runs along the top of the brain, while the inferior sagittal sinus runs along the bottom. The straight sinus connects the two, while the transverse sinus runs horizontally across the back of the brain. The sigmoid sinus then curves downward and connects to the internal jugular vein. The confluence of sinuses is where several of these sinuses meet, while the occipital sinus is located at the back of the head. Finally, the cavernous sinus is located on either side of the pituitary gland.
Understanding the location and function of these cranial venous sinuses is important for diagnosing and treating various neurological conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 20
Incorrect
-
A 45-year-old obese woman presents to the Emergency Department complaining of sudden lower back pain. Upon conducting a neurological examination, you observe a decrease in the left knee jerk reflex compared to the right. Which spinal level does this correspond to?
Your Answer: L4-L5
Correct Answer: L3-L4
Explanation:Memory aid for common reflexes:
S1-S2, buckle my shoe (ankle)
L3-L4, kick the door (knee)
C5-C6, pick up sticks (biceps)
C7-C8, shut the gate (triceps)The reflex tested by tapping the knee is the L3-L4 reflex.
Reflexes are automatic responses that our body makes in response to certain stimuli. These responses are controlled by the nervous system and do not require conscious thought. There are several common reflexes that are associated with specific roots in the spinal cord. For example, the ankle reflex is associated with the S1-S2 root, while the knee reflex is associated with the L3-L4 root. Similarly, the biceps reflex is associated with the C5-C6 root, and the triceps reflex is associated with the C7-C8 root. Understanding these reflexes can help healthcare professionals diagnose and treat certain conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 21
Correct
-
A 67-year-old male, John, visits his doctor with complaints of right-sided facial weakness. He reports no other symptoms. Upon further examination and imaging, John is diagnosed with a unilateral parotid tumor. What cranial nerve lesion could be responsible for John's presentation?
Your Answer: Extracranial lesion of right facial nerve
Explanation:Facial nerve palsy can be caused by a tumour in the parotid gland, which is an example of an extracranial lesion of the facial nerve.
The facial nerve is responsible for controlling the muscles of facial expression, so any damage to the nerve can result in weakness or paralysis of these muscles. Although the trigeminal nerve does not pass through the parotid gland, the facial nerve does.
When the facial nerve is affected outside of the cranium, it is considered an extracranial lesion. Since the parotid gland is located outside of the cranium, a tumour in this gland that causes facial nerve damage is classified as an extracranial lesion.
An extracranial palsy on the same side as the lesion is caused by a parotid gland lesion. Therefore, June’s right-sided facial weakness indicates that she has an extracranial lesion of the right facial nerve.
Cranial nerve palsies can present with diplopia, or double vision, which is most noticeable in the direction of the weakened muscle. Additionally, covering the affected eye will cause the outer image to disappear. False localising signs can indicate a pathology that is not in the expected anatomical location. One common example is sixth nerve palsy, which is often caused by increased intracranial pressure due to conditions such as brain tumours, abscesses, meningitis, or haemorrhages. Papilloedema may also be present in these cases.
-
This question is part of the following fields:
- Neurological System
-
-
Question 22
Correct
-
A 75-year-old man is brought to the emergency department by his wife. She reports that he woke up with numbness in his left arm and leg. During your examination, you observe nystagmus and suspect that he may have lateral medullary syndrome. What other feature is most likely to be present on his examination?
Your Answer: Ipsilateral dysphagia
Explanation:Lateral medullary syndrome can lead to difficulty swallowing on the same side as the lesion, along with limb sensory loss and nystagmus. This condition is caused by a blockage in the posterior inferior cerebellar artery. However, it does not typically cause ipsilateral deafness or CN III palsy, which are associated with other types of brain lesions. Contralateral homonymous hemianopia with macular sparing and visual agnosia are also not typically seen in lateral medullary syndrome. Ipsilateral facial paralysis can occur in lateral pontine syndrome, but not in lateral medullary syndrome.
Understanding Lateral Medullary Syndrome
Lateral medullary syndrome, also referred to as Wallenberg’s syndrome, is a condition that arises when the posterior inferior cerebellar artery becomes blocked. This condition is characterized by a range of symptoms that affect both the cerebellum and brainstem. Cerebellar features of the syndrome include ataxia and nystagmus, while brainstem features include dysphagia, facial numbness, and cranial nerve palsy such as Horner’s. Additionally, patients may experience contralateral limb sensory loss. Understanding the symptoms of lateral medullary syndrome is crucial for prompt diagnosis and treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 23
Correct
-
A 56-year-old woman undergoes a serum calcium test. If her renal function is normal, what percentage of calcium filtered by the glomerulus will be reabsorbed by the renal tubules?
Your Answer: 95%
Explanation:Maintaining Calcium Balance in the Body
Calcium ions are essential for various physiological processes in the body, and the largest store of calcium is found in the skeleton. The levels of calcium in the body are regulated by three hormones: parathyroid hormone (PTH), vitamin D, and calcitonin.
PTH increases calcium levels and decreases phosphate levels by increasing bone resorption and activating osteoclasts. It also stimulates osteoblasts to produce a protein signaling molecule that activates osteoclasts, leading to bone resorption. PTH increases renal tubular reabsorption of calcium and the synthesis of 1,25(OH)2D (active form of vitamin D) in the kidney, which increases bowel absorption of calcium. Additionally, PTH decreases renal phosphate reabsorption.
Vitamin D, specifically the active form 1,25-dihydroxycholecalciferol, increases plasma calcium and plasma phosphate levels. It increases renal tubular reabsorption and gut absorption of calcium, as well as osteoclastic activity. Vitamin D also increases renal phosphate reabsorption in the proximal tubule.
Calcitonin, secreted by C cells of the thyroid, inhibits osteoclast activity and renal tubular absorption of calcium.
Although growth hormone and thyroxine play a small role in calcium metabolism, the primary regulation of calcium levels in the body is through PTH, vitamin D, and calcitonin. Maintaining proper calcium balance is crucial for overall health and well-being.
-
This question is part of the following fields:
- Neurological System
-
-
Question 24
Incorrect
-
A 75-year-old man presents to the ophthalmology clinic with complaints of gradually worsening peripheral vision and a progressive headache that is worse at night. During the cranial nerve exam, a superior homonymous quadrantanopia is observed, but eye movements are intact. The rest of the cranial nerve and neurological examinations are unremarkable.
Which region of the brain is likely affected by the lesion causing these symptoms?Your Answer: Parietal lobe
Correct Answer: Temporal lobe
Explanation:Superior homonymous quadrantanopias occur when there are lesions in the inferior optic radiations located in the temporal lobe. The location of the lesion can be determined by analyzing the pattern of the visual field defect. Lesions in front of the optic chiasm cause incongruous defects, while lesions at the optic chiasm cause bitemporal/binasal hemianopias. Lesions behind the optic chiasm result in homonymous hemianopias, such as the superior homonymous quadrantanopia in this case. The optic radiations carry nerve signals from the optic chiasm to the occipital lobe. Lesions in the inferior aspect of the optic radiation cause superior visual field defects, while lesions in the superior aspect of the optic radiation cause inferior visual field defects. Therefore, the lesion causing the superior homonymous quadrantanopia in this woman must be located in the inferior aspect of the optic radiation in the temporal lobe. Lesions compressing the lateral aspect of the optic chiasm cause nasal/binasal visual field defects, while lesions to the optic nerve before the optic chiasm result in an incongruous homonymous hemianopia affecting the same eye. Parietal lobe lesions can cause inferior homonymous quadrantanopias, but not superior homonymous quadrantanopias. Compression of the superior optic chiasm causes bitemporal hemianopias, not homonymous hemianopias.
Understanding Visual Field Defects
Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.
When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.
Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.
Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.
-
This question is part of the following fields:
- Neurological System
-
-
Question 25
Correct
-
A 13-year-old boy comes to the clinic with his mother complaining of ear pain. He experienced the pain last night and was unable to sleep. As a result, he stayed home from school today. He reports that sounds are muffled on the affected side. During the examination, he has a fever. Otoscopy reveals a bulging tympanic membrane with visible fluid level, indicating a middle ear infection. The nerve to tensor tympani arises from which nerve?
Your Answer: Mandibular nerve
Explanation:The mandibular nerve is the correct answer. It is the only division of the trigeminal nerve that carries motor fibers. The vestibulocochlear nerve is the eighth cranial nerve and has two components for balance and hearing. The glossopharyngeal nerve is the ninth cranial nerve and has various functions, including taste and sensation from the tongue, pharyngeal wall, and tonsils. The maxillary nerve carries only sensory fibers. The facial nerve is the seventh cranial nerve and supplies the muscles of facial expression and taste from the anterior two-thirds of the tongue. Tensor tympani is a muscle that dampens loud noises and is innervated through the nerve to tensor tympani, which arises from the mandibular nerve. The patient’s ear pain is likely due to otitis media, which is confirmed on otoscopy.
The trigeminal nerve is the main sensory nerve of the head and also innervates the muscles of mastication. It has sensory distribution to the scalp, face, oral cavity, nose and sinuses, and dura mater, and motor distribution to the muscles of mastication, mylohyoid, anterior belly of digastric, tensor tympani, and tensor palati. The nerve originates at the pons and has three branches: ophthalmic, maxillary, and mandibular. The ophthalmic and maxillary branches are sensory only, while the mandibular branch is both sensory and motor. The nerve innervates various muscles, including the masseter, temporalis, and pterygoids.
-
This question is part of the following fields:
- Neurological System
-
-
Question 26
Correct
-
A 67-year-old male is referred to a neurologist for a complete evaluation of a 6-month history of anosmia. The patient denies any other symptoms except for anosmia and occasional headaches. An MRI scan reveals a small brain tumor, which is suspected to be the underlying cause of the symptoms.
What is the most probable location of this lesion?Your Answer: Frontal lobe
Explanation:Anosmia, or loss of smell, can be caused by lesions in the frontal lobe of the brain. In addition to anosmia, frontal lobe lesions may also cause Broca’s aphasia, personality changes, and loss of motor function. Cerebellar lesions, on the other hand, may present with the DANISH symptoms, which include dysdiadochokinesia, ataxia, intention tremor, nystagmus, and hypotonia. Lesions in the occipital lobe can cause visual loss, while lesions in the parietal lobe may cause sensory problems, body awareness issues, and language development weakening. Finally, lesions in the temporal lobe may cause Wernicke’s aphasia, memory loss, emotional changes, and a superior quadrantanopia.
Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.
In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 27
Incorrect
-
A 30-year-old male visits the ophthalmology outpatient department with symptoms of redness, photophobia, and lacrimation. His pupils constrict in response to light.
What is the neurotransmitter responsible for this pupillary response?Your Answer: Gamma-aminobutyric acid
Correct Answer: Acetylcholine
Explanation:The primary neurotransmitter used by the parasympathetic nervous system is acetylcholine (ACh). This pathway is responsible for activities such as lacrimation and pupil constriction, which are also mediated by ACh.
On the other hand, the sympathetic pathway uses epinephrine as its neurotransmitter, which is involved in pupil dilation. Norepinephrine is also a neurotransmitter of the sympathetic pathway.
In the brain, gamma-aminobutyric acid acts as an inhibitory neurotransmitter.
Understanding the Autonomic Nervous System
The autonomic nervous system is responsible for regulating involuntary functions in the body, such as heart rate, digestion, and sexual arousal. It is composed of two main components, the sympathetic and parasympathetic nervous systems, as well as a sensory division. The sympathetic division arises from the T1-L2/3 region of the spinal cord and synapses onto postganglionic neurons at paravertebral or prevertebral ganglia. The parasympathetic division arises from cranial nerves and the sacral spinal cord and synapses with postganglionic neurons at parasympathetic ganglia. The sensory division includes baroreceptors and chemoreceptors that monitor blood levels of oxygen, carbon dioxide, and glucose, as well as arterial pressure and the contents of the stomach and intestines.
The autonomic nervous system releases neurotransmitters such as noradrenaline and acetylcholine to achieve necessary functions and regulate homeostasis. The sympathetic nervous system causes fight or flight responses, while the parasympathetic nervous system causes rest and digest responses. Autonomic dysfunction refers to the abnormal functioning of any part of the autonomic nervous system, which can present in many forms and affect any of the autonomic systems. To assess a patient for autonomic dysfunction, a detailed history should be taken, and the patient should undergo a full neurological examination and further testing if necessary. Understanding the autonomic nervous system is crucial in diagnosing and treating autonomic dysfunction.
-
This question is part of the following fields:
- Neurological System
-
-
Question 28
Correct
-
A 44-year-old woman with a history of multiple sclerosis (MS) visits her GP with a complaint of eating difficulties. During the examination, the GP observes a noticeable elevation of the mandible when striking the base of it. Which cranial nerve provides the afferent limb to this reflex?
Your Answer: CN V3
Explanation:Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 29
Incorrect
-
A 28-year-old female experienced a crush injury while working, causing an air vent to fall and trap her arm. As a result, she developed fixed focal dystonia that led to flexion contracture of her right wrist and digits.
During the examination, the doctor observed intrinsic hand muscle wasting. The patient's right forearm was supinated, her wrist was hyperextended, and her fingers were flexed. Additionally, there was a decrease in sensation along the medial aspect of her hand and arm, and a reduction in handgrip strength.
Which nerve roots are affected in this case?Your Answer: C7
Correct Answer: C8/T1
Explanation:T1 nerve root damage can result in Klumpke’s paralysis.
Brachial Plexus Injuries: Erb-Duchenne and Klumpke’s Paralysis
Erb-Duchenne paralysis is a type of brachial plexus injury that results from damage to the C5 and C6 roots. This can occur during a breech presentation, where the baby’s head and neck are pulled to the side during delivery. Symptoms of Erb-Duchenne paralysis include weakness or paralysis of the arm, shoulder, and hand, as well as a winged scapula.
On the other hand, Klumpke’s paralysis is caused by damage to the T1 root of the brachial plexus. This type of injury typically occurs due to traction, such as when a baby’s arm is pulled during delivery. Klumpke’s paralysis can result in a loss of intrinsic hand muscles, which can affect fine motor skills and grip strength.
It is important to note that brachial plexus injuries can have long-term effects on a person’s mobility and quality of life. Treatment options may include physical therapy, surgery, or a combination of both. Early intervention is key to improving outcomes and minimizing the impact of these injuries.
-
This question is part of the following fields:
- Neurological System
-
-
Question 30
Incorrect
-
A 65-year-old man presents to the clinic for a follow-up after experiencing a stroke two weeks ago. His strength is 5/5 in all four limbs and his deep muscle reflexes are normal. He has no visual deficits, but he is having difficulty answering questions correctly and his speech is filled with newly invented words, although it is fluent. Additionally, he is unable to read correctly. Which blood vessel is most likely involved in his stroke?
Your Answer: Superior division of the left middle cerebral artery
Correct Answer: Inferior division of the left middle cerebral artery
Explanation:The correct answer is that Wernicke’s area is supplied by the inferior division of the left middle cerebral artery. This type of stroke can result in Wernicke’s aphasia, which is characterized by poor comprehension but normal fluency of speech. Wernicke’s area is located in the temporal gyrus and is specifically supplied by the inferior division of the left middle cerebral artery.
The other options provided are incorrect. A stroke in the basilar artery can result in the locked-in syndrome, which causes paralysis of the entire body except for eye movement. A stroke in the left anterior cerebral artery can cause behavioral changes, contralateral weakness, and contralateral sensory deficits. A stroke in the right posterior cerebral artery can cause visual deficits.
Types of Aphasia: Understanding the Different Forms of Language Impairment
Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.
Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.
Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.
Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.
-
This question is part of the following fields:
- Neurological System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)