-
Question 1
Incorrect
-
Sarah, a 25-year-old type 1 diabetic, is interested in joining a local running group. As her physician, it is important to inform her of the potential impact this increase in physical activity may have on her blood sugar levels. What advice do you give her?
Your Answer: She is at risk of an early drop due to glucose uptake and a late rise hours later due to adrenaline secretion
Correct Answer: She is at risk of an early and a late drop, hours later, in her blood glucose due muscle uptake and replacement of glycogen
Explanation:Glucose levels are impacted by exercise in various ways. Firstly, there is an initial decrease due to the increased uptake of glucose in the muscles through GLUT-2, which does not require insulin. Secondly, during high-intensity sports, the release of adrenaline and cortisol can cause a temporary increase in blood glucose levels, especially during competitive events. Finally, there is a delayed decrease as the muscles and liver glycogen are utilized during exercise and then replenished over the following hours.
Glycogenesis – the process of storing glucose as glycogen
Glycogenesis is the process of converting glucose into glycogen for storage in the liver and muscles. This process is important for maintaining blood glucose levels and providing energy during times of fasting or exercise. The key enzyme involved in glycogenesis is glycogen synthase, which catalyzes the formation of α-1,4-glycosidic bonds between glucose molecules to form glycogen. Branching enzyme then creates α-1,6-glycosidic bonds to form branches in the glycogen molecule. Glycogenin, a protein that acts as a primer for glycogen synthesis, is also involved in the process. Glycogenesis is regulated by hormones such as insulin and glucagon, which stimulate and inhibit glycogen synthesis, respectively. Understanding the process of glycogenesis is important for understanding how the body stores and utilizes glucose for energy.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 2
Incorrect
-
Which hormonal agent will enhance the secretion of water and electrolytes in pancreatic juice?
Your Answer:
Correct Answer: Secretin
Explanation:The secretion of water and electrolytes is stimulated by secretin, while cholecystokinin stimulates the secretion of enzymes. Secretin generally leads to an increase in the volume of electrolytes and water in secretions, whereas cholecystokinin increases the enzyme content. Secretion volume is reduced by somatostatin, while aldosterone tends to preserve electrolytes.
Pancreatic Secretions and their Regulation
Pancreatic secretions are composed of enzymes and aqueous substances, with a pH of 8 and a volume of 1000-1500ml per day. The acinar cells secrete enzymes such as trypsinogen, procarboxylase, amylase, and elastase, while the ductal and centroacinar cells secrete sodium, bicarbonate, water, potassium, and chloride. The regulation of pancreatic secretions is mainly stimulated by CCK and ACh, which are released in response to digested material in the small bowel. Secretin, released by the S cells of the duodenum, also stimulates ductal cells and increases bicarbonate secretion.
Trypsinogen is converted to active trypsin in the duodenum via enterokinase, and trypsin then activates the other inactive enzymes. The cephalic and gastric phases have less of an impact on regulating pancreatic secretions. Understanding the composition and regulation of pancreatic secretions is important in the diagnosis and treatment of pancreatic disorders.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 3
Incorrect
-
Whilst an inpatient for a chest infection, a 65-year-old man is seen by the hospital's diabetic specialist nurse. Despite trying various medications, his diabetic control has been generally inadequate. His latest blood test shows his HbA1c to still be above the normal range. The specialist nurse decides to initiate a new medication and advises the GP to review with a repeat blood test in a few months. The patient is cautioned about severe adverse effects, particularly Fournier gangrene.
What is the mechanism of action of the prescribed medication?Your Answer:
Correct Answer: Inhibits sodium-glucose co-transporter 2
Explanation:SGLT-2 inhibitors work by inhibiting the sodium-glucose co-transporter 2 (SGLT-2) in the renal proximal convoluted tubule. This class of drugs includes empagliflozin and dapagliflozin and can lead to weight loss. However, they may also cause urinary/genital infections and normoglycaemic ketoacidosis. Fournier gangrene is a known serious adverse effect of this drug class.
Thiazolidinedione drugs, such as pioglitazone, activate peroxisome proliferator-activated receptor-gamma (PPAR gamma). This receptor complex affects various target genes, ultimately decreasing insulin resistance and causing other effects.
Sulfonylureas, like gliclazide, block ATP-sensitive potassium channels. These drugs may cause weight gain and induce hypoglycaemia.
GLP-1 mimetics, including exenatide, activate glucagon-like peptide 1 receptors. This relatively new class of drug can lead to weight loss but is not widely used in diabetic guidelines.
DPP4 inhibitors, such as sitagliptin and linagliptin, work by inhibiting dipeptidyl peptidase-4 (DPP4). This ultimately leads to increased levels of incretin circulation, similar to GLP-1 mimetics.
Understanding SGLT-2 Inhibitors
SGLT-2 inhibitors are medications that work by blocking the reabsorption of glucose in the kidneys, leading to increased excretion of glucose in the urine. This mechanism of action helps to lower blood sugar levels in patients with type 2 diabetes mellitus. Examples of SGLT-2 inhibitors include canagliflozin, dapagliflozin, and empagliflozin.
However, it is important to note that SGLT-2 inhibitors can also have adverse effects. Patients taking these medications may be at increased risk for urinary and genital infections due to the increased glucose in the urine. Fournier’s gangrene, a rare but serious bacterial infection of the genital area, has also been reported. Additionally, there is a risk of normoglycemic ketoacidosis, a condition where the body produces high levels of ketones even when blood sugar levels are normal. Finally, patients taking SGLT-2 inhibitors may be at increased risk for lower-limb amputations, so it is important to closely monitor the feet.
Despite these potential risks, SGLT-2 inhibitors can also have benefits. Patients taking these medications often experience weight loss, which can be beneficial for those with type 2 diabetes mellitus. Overall, it is important for patients to discuss the potential risks and benefits of SGLT-2 inhibitors with their healthcare provider before starting treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 4
Incorrect
-
A 35-year-old man, with a history of type 1 diabetes, was discovered disoriented on the road. He was taken to the ER and diagnosed with hypoglycemia. As IV access was not feasible, IM glucagon was administered. What accurately explains the medication's mechanism of action?
Your Answer:
Correct Answer: Increases secretion of somatostatin
Explanation:Somatostatin, a hormone that inhibits the secretion of insulin and glucagon, is produced in the pancreas. Glucagon can increase the secretion of somatostatin through a feedback mechanism, while insulin can decrease it. Somatostatin also plays a role in controlling the emptying of the stomach and bowel.
Glucagon is a treatment option for hypoglycemia, along with IV dextrose if the patient is confused and IV access is available.
Cortisol is produced in the adrenal gland’s zona fasciculate and is triggered by ACTH, which is released from the anterior pituitary gland. Glucagon can stimulate ACTH-induced cortisol release.
Desmopressin is an analogue of vasopressin and is used to replace vasopressin/ADH in the treatment of central diabetes insipidus, where there is a lack of ADH due to decreased or non-existent secretion or production by the hypothalamus or posterior pituitary.
Prolactin, produced in the anterior pituitary, is responsible for milk production in the breasts.
Somatostatin: The Inhibitor Hormone
Somatostatin, also known as growth hormone inhibiting hormone (GHIH), is a hormone produced by delta cells found in the pancreas, pylorus, and duodenum. Its main function is to inhibit the secretion of growth hormone, insulin, and glucagon. It also decreases acid and pepsin secretion, as well as pancreatic enzyme secretion. Additionally, somatostatin inhibits the trophic effects of gastrin and stimulates gastric mucous production.
Somatostatin analogs are commonly used in the management of acromegaly, a condition characterized by excessive growth hormone secretion. These analogs work by inhibiting growth hormone secretion, thereby reducing the symptoms associated with acromegaly.
The secretion of somatostatin is regulated by various factors. Its secretion increases in response to fat, bile salts, and glucose in the intestinal lumen, as well as glucagon. On the other hand, insulin decreases the secretion of somatostatin.
In summary, somatostatin plays a crucial role in regulating the secretion of various hormones and enzymes in the body. Its inhibitory effects on growth hormone, insulin, and glucagon make it an important hormone in the management of certain medical conditions.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 5
Incorrect
-
Which one of the following is not associated with excessive glucocorticoids?
Your Answer:
Correct Answer: Hyponatraemia
Explanation:Excessive levels of glucocorticoids can lead to various negative consequences such as skin thinning, osteonecrosis, and osteoporosis. Steroids can cause the body to retain sodium and water, while also resulting in potassium loss and potentially leading to hypokalaemic alkalosis.
Cortisol: Functions and Regulation
Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.
The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.
Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 6
Incorrect
-
A 45-year-old Caucasian male visits his doctor complaining of numbness in his extremities and tingling sensations around his mouth and lips. He has undergone a thyroidectomy in the past. During a complete cranial nerve examination, the physician observes facial muscle twitching upon tapping the patient's face.
What is the reason for the facial muscle twitching observed during the examination?Your Answer:
Correct Answer: Increased irritability of peripheral nerves due to hypocalcaemia
Explanation:Chvostek’s sign is a facial twitch that occurs when the distribution of the facial nerve in front of the tragus is tapped. This sign is caused by increased irritability of peripheral nerves, which is often seen in cases of hypocalcemia. In fact, Chvostek’s sign is considered the most reliable test for hypocalcemia.
Calcium homeostasis is the process of regulating the concentration of calcium ions in the extracellular fluid. This is important because calcium ions help stabilize voltage-gated ion channels. When calcium levels are too low, these ion channels become more easily activated, leading to hyperactivity in nerve and muscle cells. This can result in hypocalcemic tetany, which is characterized by involuntary muscle spasms. On the other hand, when calcium levels are too high, voltage-gated ion channels become less responsive, leading to depressed nervous system function.
Understanding Hypoparathyroidism
Hypoparathyroidism is a medical condition that occurs when there is a decrease in the secretion of parathyroid hormone (PTH). This can be caused by primary hypoparathyroidism, which is often a result of thyroid surgery, leading to low calcium and high phosphate levels. Treatment for this type of hypoparathyroidism involves the use of alfacalcidol. The main symptoms of hypoparathyroidism are due to hypocalcaemia and include muscle twitching, cramping, and spasms, as well as perioral paraesthesia. Other symptoms include Trousseau’s sign, which is carpal spasm when the brachial artery is occluded, and Chvostek’s sign, which is facial muscle twitching when the parotid is tapped. Chronic hypoparathyroidism can lead to depression and cataracts, and ECG may show a prolonged QT interval.
Pseudohypoparathyroidism is another type of hypoparathyroidism that occurs when the target cells are insensitive to PTH due to an abnormality in a G protein. This condition is associated with low IQ, short stature, and shortened 4th and 5th metacarpals. The diagnosis is made by measuring urinary cAMP and phosphate levels following an infusion of PTH. In hypoparathyroidism, this will cause an increase in both cAMP and phosphate levels. In pseudohypoparathyroidism type I, neither cAMP nor phosphate levels are increased, while in pseudohypoparathyroidism type II, only cAMP rises. Pseudopseudohypoparathyroidism is a similar condition to pseudohypoparathyroidism, but with normal biochemistry.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 7
Incorrect
-
A young man comes to the clinic with symptoms suggestive of mania. After further inquiry and assessment, he is found to have tachycardia, sweaty palms, and a recent bout of diarrhea. What is the probable diagnosis?
Your Answer:
Correct Answer: Grave's disease
Explanation:The correct diagnosis for this patient is Grave’s disease, which is characterized by hyperthyroidism. While mania may be a symptom, it is important to note that tachycardia, sweaty hands, and exophthalmos are specific to Grave’s disease.
Bipolar disorder may also present with manic episodes, but it does not typically include the other symptoms associated with hyperthyroidism.
Hashimoto’s thyroiditis is another autoimmune thyroid disorder, but it causes hypothyroidism instead of hyperthyroidism. Symptoms of hypothyroidism may include bradycardia and dry skin.
Graves’ Disease: Common Features and Unique Signs
Graves’ disease is the most frequent cause of thyrotoxicosis, which is commonly observed in women aged 30-50 years. The condition presents typical features of thyrotoxicosis, such as weight loss, palpitations, and heat intolerance. However, Graves’ disease also displays specific signs that are not present in other causes of thyrotoxicosis. These include eye signs, such as exophthalmos and ophthalmoplegia, as well as pretibial myxoedema and thyroid acropachy. The latter is a triad of digital clubbing, soft tissue swelling of the hands and feet, and periosteal new bone formation.
Graves’ disease is characterized by the presence of autoantibodies, including TSH receptor stimulating antibodies in 90% of patients and anti-thyroid peroxidase antibodies in 75% of patients. Thyroid scintigraphy reveals a diffuse, homogenous, and increased uptake of radioactive iodine. These features help distinguish Graves’ disease from other causes of thyrotoxicosis and aid in its diagnosis.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 8
Incorrect
-
A 45-year-old woman presents to the hypertension clinic with refractory hypertension. She was diagnosed with hypertension at the age of 33 and has been on multiple antihypertensive medications without success. She reports experiencing intermittent headaches, flushes, and palpitations.
During the discussion of further treatment options, the patient reveals that her blood pressure dropped to an average of 100/65 mmHg when she was prescribed an alpha-blocker. This suggests that her hypertension may have a secondary cause.
What is the most likely anatomical location of the underlying issue?Your Answer:
Correct Answer: Adrenal medulla
Explanation:Although a 1.5cm difference in kidney size or a single occurrence of flash edema may prompt the initiation of an ACE inhibitor, the symptoms described in the patient’s medical history are more indicative of a phaeochromocytoma, which is likely originating from the adrenal medulla.
The Function of Adrenal Medulla
The adrenal medulla is responsible for producing almost all of the adrenaline in the body, along with small amounts of noradrenaline. Essentially, it is a specialized and enlarged sympathetic ganglion. This gland plays a crucial role in the body’s response to stress and danger, as adrenaline is a hormone that prepares the body for the fight or flight response. When the body perceives a threat, the adrenal medulla releases adrenaline into the bloodstream, which increases heart rate, blood pressure, and respiration, while also dilating the pupils and increasing blood flow to the muscles. This response helps the body to react quickly and effectively to danger. Overall, the adrenal medulla is an important component of the body’s stress response system.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 9
Incorrect
-
A 65-year-old woman with type 2 diabetes mellitus is being evaluated by her diabetic nurse. Despite taking metformin for the past 6 months, her glycaemic control remains poor. To improve management, the decision is made to add sitagliptin (a dipeptidyl-peptidase 4 (DPP-4) inhibitor) to her current metformin regimen.
What is the mechanism of action of the newly prescribed medication?Your Answer:
Correct Answer: Increased levels of glucagon-like peptide 1 (GLP-1)
Explanation:DPP-4 inhibitors, like sitagliptin, work by inhibiting the breakdown of incretins such as GLP-1 and GIP. This leads to higher levels of insulin being released, as incretins increase insulin release. These inhibitors are often weight-neutral, but can occasionally cause weight loss.
The answer Increases cell sensitivity to insulin is incorrect, as this is the mechanism of action of metformin, not DPP-4 inhibitors. Metformin increases cell sensitivity to insulin, but the exact mechanism is not fully understood.
Similarly, Inhibition of sodium-glucose co-transporter (SGLT2) is incorrect, as this is the mechanism of action of SGLT2 inhibitors, not DPP-4 inhibitors. SGLT2 inhibitors prevent glucose absorption in the kidneys, leading to higher levels of glucose in the urine and an increased risk of urinary tract infections.
Lastly, Increases adipogenesis is incorrect, as this is the mechanism of action of thiazolidinediones, not DPP-4 inhibitors. Thiazolidinediones stimulate adipogenesis, causing cells to become more dependent on glucose for energy.
Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 10
Incorrect
-
A 29-year-old female has been diagnosed with hyperthyroidism. She is experiencing heat intolerance and is very frightened by her palpitations. The GP prescribes Carbimazole and a second medication to manage the palpitations. Which receptors are being overstimulated by the increased catecholamine effects in this patient, leading to her palpitations?
Your Answer:
Correct Answer: ÎČ1 receptors
Explanation:The sensitivity of the body to catecholamines is heightened by thyroid hormones. When catecholamines activate the ÎČ1 receptors in the heart, it leads to an elevation in heart rate.
Thyroid disorders are commonly encountered in clinical practice, with hypothyroidism and thyrotoxicosis being the most prevalent. Women are ten times more likely to develop these conditions than men. The thyroid gland is a bi-lobed structure located in the anterior neck and is part of a hypothalamus-pituitary-end organ system that regulates the production of thyroxine and triiodothyronine hormones. These hormones help regulate energy sources, protein synthesis, and the body’s sensitivity to other hormones. Hypothyroidism can be primary or secondary, while thyrotoxicosis is mostly primary. Autoimmunity is the leading cause of thyroid problems in the developed world.
Thyroid disorders can present in various ways, with symptoms often being the opposite depending on whether the thyroid gland is under or overactive. For example, hypothyroidism may result in weight gain, while thyrotoxicosis leads to weight loss. Thyroid function tests are the primary investigation for diagnosing thyroid disorders. These tests primarily look at serum TSH and T4 levels, with T3 being measured in specific cases. TSH levels are more sensitive than T4 levels for monitoring patients with existing thyroid problems.
Treatment for thyroid disorders depends on the cause. Patients with hypothyroidism are given levothyroxine to replace the underlying deficiency. Patients with thyrotoxicosis may be treated with propranolol to control symptoms such as tremors, carbimazole to reduce thyroid hormone production, or radioiodine treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 11
Incorrect
-
Cortisol is mainly synthesized by which of the following?
Your Answer:
Correct Answer: Zona fasciculata of the adrenal
Explanation:The adrenal gland’s zona fasciculata produces cortisol, with a relative glucocorticoid activity of 1. Prednisolone has a relative glucocorticoid activity of 4, while dexamethasone has a relative glucocorticoid activity of 25.
Cortisol: Functions and Regulation
Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.
The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.
Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 12
Incorrect
-
A 67-year-old male is undergoing evaluation for Cushing's syndrome. During the assessment, his primary care physician requests a serum cortisol test. In its unbound form, cortisol is responsible for the manifestations of Cushing's syndrome. What is the primary substance that binds to cortisol in the bloodstream, rendering it inactive?
Your Answer:
Correct Answer: Cortisol binding globulin
Explanation:Cortisol: Functions and Regulation
Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.
The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.
Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 13
Incorrect
-
A 65-year-old man with a history of type 2 diabetes is being seen by his primary care physician.
He is currently taking metformin 1g twice daily and lisinopril for his high blood pressure.
His most recent HbA1c result is:
HbA1c 58 mmol/L (<42)
After further discussion, he has agreed to add a second medication for his diabetes. He has been informed that potential side effects may include weight gain, hypoglycemia, and gastrointestinal issues.
What is the mechanism of action for this new medication?Your Answer:
Correct Answer: Binding to KATP channels on pancreatic beta cell membrane
Explanation:Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).
While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.
It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 14
Incorrect
-
A young male with a history of diabetes mellitus type 1 is admitted to the emergency department. He was previously found to be confused by his roommates in his room. As well as this, he complains of nausea and abdominal pain.
An ECG is performed and shows tall tented T waves.
A simple blood test reveals marked hyperglycemia. A urinalysis shows the presence of ketones ++.
His bloods show the following:
Hb 136 g/L Male: (135-180)
Platelets 210 * 109/L (150 - 400)
WBC 9.5 * 109/L (4.0 - 11.0)
Na+ 137 mmol/L (135 - 145)
K+ 7.1 mmol/L (3.5 - 5.0)
Bicarbonate 31 mmol/L (22 - 29)
Urea 8.0 mmol/L (2.0 - 7.0)
Creatinine 155 ”mol/L (55 - 120)
He is given insulin, calcium gluconate and IV saline.
What is the main mechanism as to why the patient's potassium level will decrease?Your Answer:
Correct Answer: Insulin increases sodium potassium pump
Explanation:Insulin stimulates the Na+/K+ ATPase pump, leading to a decrease in serum potassium levels. This is primarily achieved through increased activity of the sodium-potassium pump, which is triggered by phosphorylation of the transmembrane subunits in response to insulin. While calcium gluconate is used to protect the heart during hyperkalaemia-induced arrhythmias, it does not affect potassium levels. Although IV fluids can improve renal function and potassium clearance, they are not the primary method for reducing potassium levels. Calcium-activated potassium channels are present throughout the body and are activated by an increase in intracellular calcium levels during action potentials.
Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 15
Incorrect
-
A 65-year-old woman with hypocalcaemia has elevated parathyroid hormone levels. Is it a typical physiological response to increase calcium levels? In the kidney, where does parathyroid hormone act to enhance calcium reabsorption?
Your Answer:
Correct Answer: Distal convoluted tubule
Explanation:Understanding Parathyroid Hormone and Its Effects
Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.
The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.
Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 16
Incorrect
-
A 26-year-old male patient comes to the follow-up clinic after undergoing surgery to remove an endocrine gland. He had been experiencing symptoms such as profuse sweating, headaches, palpitations, and high blood pressure (200/120mmHg) prior to the decision for surgery. What type of cells would be revealed through histological staining of the removed organ?
Your Answer:
Correct Answer: Chromaffin cells
Explanation:The man’s initial symptoms are consistent with a diagnosis of phaeochromocytoma, a type of neuroendocrine tumor that affects the chromaffin cells in the adrenal medulla. This condition leads to an overproduction of adrenaline and noradrenaline, resulting in an excessive sympathetic response.
Calcitonin is secreted by the parafollicular C cells in the thyroid gland.
The anterior pituitary gland contains gonadotropes, lactotropes, and thyrotropes, which secrete gonadotropins (FSH, LH), prolactin, and TSH, respectively.
Phaeochromocytoma: A Rare Tumor that Secretes Catecholamines
Phaeochromocytoma is a type of tumor that secretes catecholamines and is considered rare. It is familial in about 10% of cases and may be associated with certain syndromes such as MEN type II, neurofibromatosis, and von Hippel-Lindau syndrome. This tumor can be bilateral in 10% of cases and malignant in 10%. It can also occur outside of the adrenal gland, with the most common site being the organ of Zuckerkandl, which is adjacent to the bifurcation of the aorta.
The symptoms of phaeochromocytoma are typically episodic and include hypertension (which is present in around 90% of cases and may be sustained), headaches, palpitations, sweating, and anxiety. To diagnose this condition, a 24-hour urinary collection of metanephrines is preferred over a 24-hour urinary collection of catecholamines due to its higher sensitivity (97%).
Surgery is the definitive management for phaeochromocytoma. However, before surgery, the patient must first be stabilized with medical management, which includes an alpha-blocker (such as phenoxybenzamine) given before a beta-blocker (such as propranolol).
-
This question is part of the following fields:
- Endocrine System
-
-
Question 17
Incorrect
-
A 23-year-old man was diagnosed with maturity-onset diabetes of the young (MODY) type 1 and has been on an oral anti-diabetic agent for the past year. What is the mechanism of action of the drug he is most likely taking?
Your Answer:
Correct Answer: Binding to ATP-dependent K+ channel on the pancreatic beta cell membrane
Explanation:The patient is likely taking a sulfonylurea medication, which works by binding to the ATP-dependent K+ channel on the pancreatic beta-cell membrane to promote endogenous insulin secretion. This is the recommended first-line treatment for patients with MODY type 1, as their genetic defect results in reduced insulin secretion. Thiazolidinediones (glitazones) activate peroxisome proliferator-activated receptor-gamma (PPARÎł) and are not typically used in this population. Metformin (biguanide class) inhibits hepatic glucose production and increases peripheral uptake, but is less effective than sulfonylureas in MODY type 1. Acarbose inhibits intestinal alpha-glucosidase and is not used in MODY patients. Dipeptidyl peptidase-4 inhibitors (gliptins) are commonly used in type 2 diabetes but are not first-line treatment for MODY.
Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).
While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.
It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 18
Incorrect
-
A 12-year-old girl, previously healthy, presents to the emergency department with symptoms of nausea, vomiting, and confusion. The patient's father reports his child appearing fatigued, and having increased thirst and urinary frequency over the past few days. Upon laboratory analysis, the patient's serum glucose is found to be 25 mmol/L and urinalysis is positive for ketones. The medical team initiates fluid resuscitation and insulin therapy.
What electrolyte changes are anticipated following the treatment of this patient?Your Answer:
Correct Answer: Decrease in potassium levels
Explanation:The Na+/K+ ATPase pump is stimulated by insulin, leading to a decrease in serum potassium levels. This effect is particularly relevant in patients with diabetic ketoacidosis, who experience insulin deficiency and hyperkalemia. It is important to monitor serum potassium levels closely during the management of diabetic ketoacidosis to avoid the potential complications of hypokalemia. Insulin does not cause a decrease in sodium levels, and its effects on calcium and phosphate homeostasis are minimal. The resolution of ketoacidosis with insulin and fluids will result in an increase in serum bicarbonate levels back to normal range.
Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 19
Incorrect
-
A 28-year-old female patient presents to her GP with concerns about the appearance of lumps in her lower abdomen. She has been diagnosed with type 1 diabetes and has been using insulin for more than a decade. The lumps have developed in the areas where she administers her insulin injections.
What is the probable cause of the lumps?Your Answer:
Correct Answer: Lipodystrophy
Explanation:Small subcutaneous lumps at injection sites, known as lipodystrophy, can be caused by insulin.
The type and location of the lump suggest that lipodystrophy is the most probable cause.
Deposits of insulin and glucose are not responsible for the formation of these lumps.
While a lipoma could also cause similar lumps, it is less likely than lipodystrophy, which is a known complication of insulin injections, especially at the injection site. These lumps can occur in multiple locations.
Insulin therapy can have side-effects that patients should be aware of. One of the most common side-effects is hypoglycaemia, which can cause sweating, anxiety, blurred vision, confusion, and aggression. Patients should be taught to recognize these symptoms and take 10-20g of a short-acting carbohydrate, such as a glass of Lucozade or non-diet drink, three or more glucose tablets, or glucose gel. It is also important for every person treated with insulin to have a glucagon kit for emergencies where the patient is not able to orally ingest a short-acting carbohydrate. Patients who have frequent hypoglycaemic episodes may develop reduced awareness, and beta-blockers can further reduce hypoglycaemic awareness.
Another potential side-effect of insulin therapy is lipodystrophy, which typically presents as atrophy or lumps of subcutaneous fat. This can be prevented by rotating the injection site, as using the same site repeatedly can cause erratic insulin absorption. It is important for patients to be aware of these potential side-effects and to discuss any concerns with their healthcare provider. By monitoring their blood sugar levels and following their treatment plan, patients can manage the risks associated with insulin therapy and maintain good health.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 20
Incorrect
-
A 38-year-old woman visits her GP after being prescribed carbimazole for Grave's disease. The GP must inform her of crucial side effects that require immediate medical attention if they occur. What is the most significant side effect?
Your Answer:
Correct Answer: Sore throat
Explanation:Carbimazole, although generally safe, can have a rare but severe side effect of bone marrow suppression. This can lead to a weakened immune system due to low white blood cells, specifically neutrophils, resulting in neutropenia and agranulocytosis. The most common symptom of this is a sore throat, and if this occurs, treatment with carbimazole should be discontinued.
Hair loss and headaches are common side effects but are not considered harmful to the patient’s health. Other reported side effects include nausea, stomach pains, itchy skin, rashes, and muscle and joint pain.
It is important to note that chest pain and changes in vision are not known side effects of carbimazole.
Carbimazole is a medication used to treat thyrotoxicosis, a condition where the thyroid gland produces too much thyroid hormone. It is usually given in high doses for six weeks until the patient’s thyroid hormone levels become normal, after which the dosage is reduced. The drug works by blocking thyroid peroxidase, an enzyme that is responsible for coupling and iodinating the tyrosine residues on thyroglobulin, which ultimately leads to a reduction in thyroid hormone production. In contrast, propylthiouracil has a dual mechanism of action, inhibiting both thyroid peroxidase and 5′-deiodinase, which reduces the peripheral conversion of T4 to T3.
However, carbimazole is not without its adverse effects. One of the most serious side effects is agranulocytosis, a condition where the body’s white blood cell count drops significantly, making the patient more susceptible to infections. Additionally, carbimazole can cross the placenta and affect the developing fetus, although it may be used in low doses during pregnancy under close medical supervision. Overall, carbimazole is an effective medication for managing thyrotoxicosis, but its potential side effects should be carefully monitored.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 21
Incorrect
-
A 43-year-old woman with a history of severe ulcerative colitis (UC) presents to the emergency department with her fourth acute flare in the past 6 months. She has a past medical history of recreational drug use and depression. The patient is given IV hydrocortisone and appears to be responding well. She is discharged after a day of observation with a 7-day course of prednisolone, but the consultant is considering long-term steroid therapy due to the severity of her condition. Which of the following is associated with long-term steroid use?
Your Answer:
Correct Answer: Increased risk of mania
Explanation:Long-term use of steroids can lead to a higher risk of psychiatric disorders such as depression, mania, psychosis, and insomnia. This risk is even greater if the patient has a history of recreational drug use or mental disorders. While proximal myopathy is a known adverse effect of long-term steroid use, distal myopathy is not commonly observed. However, some studies have reported it as a rare and uncommon adverse effect. Steroids are also known to increase appetite, leading to weight gain, making the last two options incorrect.
Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 22
Incorrect
-
A 55-year-old man comes in for his regular check-up with his GP. He has a medical history of chronic pancreatitis and diabetes mellitus and is currently taking the maximum doses of metformin and gliclazide. During a random plasma glucose test, his levels show 18.0 mmol/l and his urinalysis reveals glycosuria with minimal ketones. The GP suspects that his body is not producing enough insulin and decides to initiate insulin therapy. Can you identify the location in the body where insulin is produced?
Your Answer:
Correct Answer: Pancreatic beta cells
Explanation:Diabetes mellitus in this patient is most likely caused by chronic pancreatitis, which has resulted in the destruction of the pancreatic endocrine cells responsible for producing endogenous insulin. These cells are located in the Islets of Langerhans and are known as pancreatic beta cells (ÎČ-cells). Other cells in the pancreas, such as alpha cells (which secrete glucagon) and delta cells (which secrete somatostatin), do not produce insulin. Similarly, gastric G cells secrete gastrin and are not involved in insulin production.
Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 23
Incorrect
-
A 15-year-old girl is brought to her pediatrician by her father who is worried that his daughter has not yet had a menstrual period. The girl reports that she has been unable to smell for as long as she can remember but is otherwise in good health. During the examination, the girl is found to have underdeveloped breasts and no pubic hair. Her vital signs and body mass index are within normal limits.
What is the probable reason for the girl's condition?Your Answer:
Correct Answer: Kallman syndrome
Explanation:The most likely diagnosis for this girl is Kallmann syndrome, which is characterized by a combination of hypogonadotropic hypogonadism and anosmia. This genetic disorder occurs due to a failure in neuron migration, resulting in deficient hypothalamic gonadotropin releasing hormone (GnRH) and a lack of secondary sexual characteristics. Anosmia is a distinguishing feature of Kallmann syndrome compared to other causes of hypogonadotropic hypogonadism. Congenital adrenal hypoplasia, which results in insufficient cortisol production due to adrenal cortex enzyme deficiency, can also cause hypogonadotropic hypogonadism but is less likely in this case due to the presence of anosmia. Imperforate hymen, which presents with lower abdominal/pelvic pain without vaginal bleeding, is not consistent with this patient’s symptoms. Malnutrition is not indicated as a possible diagnosis.
Kallmann’s syndrome is a condition that can cause delayed puberty due to hypogonadotropic hypogonadism. It is often inherited as an X-linked recessive trait and is believed to be caused by a failure of GnRH-secreting neurons to migrate to the hypothalamus. One of the key indicators of Kallmann’s syndrome is anosmia, or a lack of smell, in boys with delayed puberty. Other features may include hypogonadism, cryptorchidism, low sex hormone levels, and normal or above-average height. Some patients may also have cleft lip/palate and visual/hearing defects.
Management of Kallmann’s syndrome typically involves testosterone supplementation. Gonadotrophin supplementation may also be used to stimulate sperm production if fertility is desired later in life. It is important for individuals with Kallmann’s syndrome to receive appropriate medical care and monitoring to manage their symptoms and ensure optimal health outcomes.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 24
Incorrect
-
Which of the following will increase the volume of pancreatic exocrine secretions?
Your Answer:
Correct Answer: Cholecystokinin
Explanation:The volume of pancreatic secretions is often increased by cholecystokinin.
Pancreatic Secretions and their Regulation
Pancreatic secretions are composed of enzymes and aqueous substances, with a pH of 8 and a volume of 1000-1500ml per day. The acinar cells secrete enzymes such as trypsinogen, procarboxylase, amylase, and elastase, while the ductal and centroacinar cells secrete sodium, bicarbonate, water, potassium, and chloride. The regulation of pancreatic secretions is mainly stimulated by CCK and ACh, which are released in response to digested material in the small bowel. Secretin, released by the S cells of the duodenum, also stimulates ductal cells and increases bicarbonate secretion.
Trypsinogen is converted to active trypsin in the duodenum via enterokinase, and trypsin then activates the other inactive enzymes. The cephalic and gastric phases have less of an impact on regulating pancreatic secretions. Understanding the composition and regulation of pancreatic secretions is important in the diagnosis and treatment of pancreatic disorders.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 25
Incorrect
-
A 25-year-old woman visits the endocrinology department for weight management issues. She has been struggling with her weight since she was a child and currently has a BMI of 46 kg/mÂČ. Despite eating large portions at meals, she never feels full and snacks between meals. Her parents and two older siblings are all at a healthy weight. Genetic testing reveals a de novo mutation in the satiety signalling pathway. Which hormone's decreased synthesis may be responsible for her condition?
Your Answer:
Correct Answer: Leptin
Explanation:Leptin is the hormone that lowers appetite, while ghrelin is the hormone that increases appetite. Leptin is produced by adipose tissue and plays a crucial role in regulating feelings of fullness and satiety. Mutations that affect leptin signaling can lead to severe childhood-onset obesity. On the other hand, ghrelin is known as the hunger hormone and stimulates appetite. However, decreased ghrelin synthesis does not cause obesity. Insulin is an anabolic hormone that promotes glucose uptake and lipogenesis, while obestatin’s role in satiety is still controversial.
The Physiology of Obesity: Leptin and Ghrelin
Leptin is a hormone produced by adipose tissue that plays a crucial role in regulating body weight. It acts on the hypothalamus, specifically on the satiety centers, to decrease appetite and induce feelings of fullness. In cases of obesity, where there is an excess of adipose tissue, leptin levels are high. Leptin also stimulates the release of melanocyte-stimulating hormone (MSH) and corticotrophin-releasing hormone (CRH), which further contribute to the regulation of appetite. On the other hand, low levels of leptin stimulate the release of neuropeptide Y (NPY), which increases appetite.
Ghrelin, on the other hand, is a hormone that stimulates hunger. It is mainly produced by the P/D1 cells lining the fundus of the stomach and epsilon cells of the pancreas. Ghrelin levels increase before meals, signaling the body to prepare for food intake, and decrease after meals, indicating that the body has received enough nutrients.
In summary, the balance between leptin and ghrelin plays a crucial role in regulating appetite and body weight. In cases of obesity, there is an imbalance in this system, with high levels of leptin and potentially disrupted ghrelin signaling, leading to increased appetite and weight gain.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 26
Incorrect
-
A 14-year-old boy is brought to the clinic by his mother due to concerns about his height compared to other boys his age. The boy also shares that he often receives comments about his appearance, with some likening him to a toy doll. What can be inferred about the pattern of hormone release that he may be lacking?
Your Answer:
Correct Answer: It is released in a pulsatile manner
Explanation:The doll-like appearance of the boy in his presentation suggests that he may be suffering from growth hormone deficiency, which can cause short stature, forehead prominence, and maxillary hypoplasia. The hypothalamus controls the release of growth hormone through the pulsatile release of growth hormone releasing hormone. Therefore, measuring GHRH levels is not a useful method for investigating growth hormone deficiency.
Understanding Growth Hormone and Its Functions
Growth hormone (GH) is a hormone produced by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in postnatal growth and development, as well as in regulating protein, lipid, and carbohydrate metabolism. GH acts on a transmembrane receptor for growth factor, leading to receptor dimerization and direct or indirect effects on tissues via insulin-like growth factor 1 (IGF-1), which is primarily secreted by the liver.
GH secretion is regulated by various factors, including growth hormone releasing hormone (GHRH), fasting, exercise, and sleep. Conversely, glucose and somatostatin can decrease GH secretion. Disorders associated with GH include acromegaly, which results from excess GH, and GH deficiency, which can lead to short stature.
In summary, GH is a vital hormone that plays a significant role in growth and metabolism. Understanding its functions and regulation can help in the diagnosis and treatment of GH-related disorders.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 27
Incorrect
-
A 45-year-old male is recovering from trans-sphenoidal surgery for a non-functioning pituitary adenoma. He reports excessive thirst and increased water intake to the doctors during the ward round, four days after the surgery. The patient's fluid chart shows a urine output of 7 litres in the past 24 hours, and his blood glucose level is 5.2mmol/L. To confirm the diagnosis, the doctors plan to conduct a water-deprivation test and a vasopressin test.
What are the expected results of the urine osmolality investigations, given the likely diagnosis?Your Answer:
Correct Answer: After fluid deprivation, low; after desmopressin, high
Explanation:The patient has developed cranial diabetes insipidus after pituitary surgery. Water deprivation testing showed low urine osmolality after fluid deprivation and high urine osmolality after desmopressin administration. This condition can also be caused by head trauma or occur idiopathically. Water deprivation testing can also be useful for investigating psychogenic polydipsia. Nephrogenic diabetes insipidus is the other main cause, where the kidneys cannot properly respond to vasopressin.
The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 28
Incorrect
-
What is the association between brown tumours of bone and a specific condition or disease?
Your Answer:
Correct Answer: Hyperparathyroidism
Explanation:Brown tumors are bone tumors that develop due to excessive osteoclast activity, typically in cases of hyperparathyroidism. These tumors are composed of fibrous tissue, woven bone, and supporting blood vessels, but lack any matrix. They do not appear on x-rays due to their radiolucent nature. Osteoclasts consume the trabecular bone that osteoblasts produce, leading to a cycle of reparative bone deposition and resorption that can cause bone pain and involve the periosteum, resulting in an expansion beyond the typical shape of the bone. The tumors are called brown due to the deposition of haemosiderin at the site.
Primary Hyperparathyroidism: Causes, Symptoms, and Treatment
Primary hyperparathyroidism is a condition that is commonly seen in elderly females and is characterized by an unquenchable thirst and an inappropriately normal or raised parathyroid hormone level. It is usually caused by a solitary adenoma, hyperplasia, multiple adenoma, or carcinoma. While around 80% of patients are asymptomatic, the symptomatic features of primary hyperparathyroidism may include polydipsia, polyuria, depression, anorexia, nausea, constipation, peptic ulceration, pancreatitis, bone pain/fracture, renal stones, and hypertension.
Primary hyperparathyroidism is associated with hypertension and multiple endocrine neoplasia, such as MEN I and II. To diagnose this condition, doctors may perform a technetium-MIBI subtraction scan or look for a characteristic X-ray finding of hyperparathyroidism called the pepperpot skull.
The definitive management for primary hyperparathyroidism is total parathyroidectomy. However, conservative management may be offered if the calcium level is less than 0.25 mmol/L above the upper limit of normal, the patient is over 50 years old, and there is no evidence of end-organ damage. Patients who are not suitable for surgery may be treated with cinacalcet, a calcimimetic that mimics the action of calcium on tissues by allosteric activation of the calcium-sensing receptor.
In summary, primary hyperparathyroidism is a condition that can cause various symptoms and is commonly seen in elderly females. It can be diagnosed through various tests and managed through surgery or medication.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 29
Incorrect
-
A 56-year-old woman visits her primary care physician with concerns about recent weight gain. She reports maintaining her usual diet and exercise routine, but has noticed her face appearing rounder and the development of purplish stretch marks on her abdomen. During the exam, her heart rate is 89 beats per minute, respiratory rate is 16 breaths per minute, and blood pressure is 157/84 mmHg. Her waist circumference measures 41 inches and her body mass index is 28 kg/m2. What is one effect of the primary hormone involved in this patient's condition?
Your Answer:
Correct Answer: Upregulation of alpha-1-adrenoceptors on arterioles
Explanation:The patient is exhibiting symptoms consistent with a state of elevated cortisol levels, known as Cushing syndrome. These symptoms include recent weight gain, a round face (moon face), abdominal striae, high blood pressure, and truncal obesity. Cushing syndrome can have various causes, including the use of glucocorticoids or an ectopic ACTH secretion.
Elevated cortisol levels can lead to an increase in blood glucose levels, putting individuals at risk for hyperglycemia and diabetes. Cortisol can also suppress the immune system, inhibiting the production of prostaglandins, leukotrienes, and interleukin-2, and decreasing the adhesion of white blood cells. Additionally, cortisol can up-regulate alpha-1-adrenoceptors on arterioles, resulting in high blood pressure. High cortisol levels can also decrease osteoblast activity, leading to weakened bones, and reduce fibroblast activity and collagen synthesis, resulting in delayed wound healing. The abdominal striae seen in patients with high cortisol levels are typically due to decreased collagen synthesis.
Causes of Cushing’s Syndrome
Cushing’s syndrome is a condition that can be caused by both endogenous and exogenous factors. However, it is important to note that exogenous causes, such as the use of glucocorticoid therapy, are more common than endogenous ones. The condition can be classified into two categories: ACTH dependent and ACTH independent causes.
ACTH dependent causes of Cushing’s syndrome include Cushing’s disease, which is caused by a pituitary tumor secreting ACTH and producing adrenal hyperplasia. Ectopic ACTH production, which is caused by small cell lung cancer, is another ACTH dependent cause. On the other hand, ACTH independent causes include iatrogenic factors such as steroid use, adrenal adenoma, adrenal carcinoma, Carney complex, and micronodular adrenal dysplasia.
In some cases, a condition called Pseudo-Cushing’s can mimic Cushing’s syndrome. This is often caused by alcohol excess or severe depression and can cause false positive results in dexamethasone suppression tests or 24-hour urinary free cortisol tests. To differentiate between Cushing’s syndrome and Pseudo-Cushing’s, an insulin stress test may be used.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 30
Incorrect
-
A 28-year-old female, who is 5 months postpartum, presents with a 4-week history of weight loss, heat intolerance, tremor, palpitation and diarrhoea. Pregnancy and birth were uncomplicated. On further questioning, she admits having taken off-license weight loss medication bought from the internet 2 months ago. Past medical history and family history are insignificant. She does not smoke or drink alcohol.
On physical examination, she has exophthalmos, brisk reflexes and fine tremor. Her vital signs were heart rate 100/minute, blood pressure 138/78 mmHg, temperature 36.6ÂșC. The thyroid gland was diffusely enlarged.
Thyroid Stimulating Hormone (TSH) 0.01 mU/l
Free thyroxine (T4) 25 pmol/l
Total thyroxine (T4) 155 nmol/l
What is the most likely diagnosis?Your Answer:
Correct Answer: Graves' Disease
Explanation:During the postnatal period, Graves’ disease may either present for the first time or worsen. Exophthalmos is a distinctive symptom of Graves’ disease that is not observed in other hyperthyroid conditions. Hypothyroidism is caused by Hashimoto’s thyroiditis. postpartum thyroiditis is characterized by initial hyperthyroidism after childbirth, followed by normal or occasionally reduced thyroid levels.
During pregnancy, there is an increase in the levels of thyroxine-binding globulin (TBG), which causes an increase in the levels of total thyroxine. However, this does not affect the free thyroxine level. If left untreated, thyrotoxicosis can increase the risk of fetal loss, maternal heart failure, and premature labor. Graves’ disease is the most common cause of thyrotoxicosis during pregnancy, but transient gestational hyperthyroidism can also occur due to the activation of the TSH receptor by HCG. Propylthiouracil has traditionally been the antithyroid drug of choice, but it is associated with an increased risk of severe hepatic injury. Therefore, NICE Clinical Knowledge Summaries recommend using propylthiouracil in the first trimester and switching to carbimazole in the second trimester. Maternal free thyroxine levels should be kept in the upper third of the normal reference range to avoid fetal hypothyroidism. Thyrotropin receptor stimulating antibodies should be checked at 30-36 weeks gestation to determine the risk of neonatal thyroid problems. Block-and-replace regimes should not be used in pregnancy, and radioiodine therapy is contraindicated.
On the other hand, thyroxine is safe during pregnancy, and serum thyroid-stimulating hormone should be measured in each trimester and 6-8 weeks postpartum. Women require an increased dose of thyroxine during pregnancy, up to 50% as early as 4-6 weeks of pregnancy. Breastfeeding is safe while on thyroxine. It is important to manage thyroid problems during pregnancy to ensure the health of both the mother and the baby.
-
This question is part of the following fields:
- Endocrine System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)