00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A 45-year-old patient presents to the clinic with complaints of abdominal pain. Upon...

    Incorrect

    • A 45-year-old patient presents to the clinic with complaints of abdominal pain. Upon routine blood tests, the following results were obtained:

      Na+ 142 mmol/l
      K+ 4.0 mmol/l
      Chloride 104 mmol/l
      Bicarbonate 19 mmol/l
      Urea 7.0 mmol/l
      Creatinine 112 µmol/l

      What is the calculated anion gap?

      Your Answer: 20 mmol/L

      Correct Answer: 23 mmol/L

      Explanation:

      Understanding Anion Gap in Metabolic Acidosis

      Metabolic acidosis is a condition where the body produces too much acid or loses too much bicarbonate. Anion gap is a useful tool in diagnosing metabolic acidosis. It is calculated by subtracting the sum of bicarbonate and chloride from the sum of sodium and potassium. A normal anion gap is between 8-14 mmol/L.

      There are two types of metabolic acidosis: normal anion gap and raised anion gap. Normal anion gap or hyperchloraemic metabolic acidosis can be caused by gastrointestinal bicarbonate loss, renal tubular acidosis, drugs like acetazolamide, ammonium chloride injection, and Addison’s disease. On the other hand, raised anion gap metabolic acidosis can be caused by lactate due to shock or hypoxia, ketones in diabetic ketoacidosis or alcohol, urate in renal failure, acid poisoning from salicylates or methanol, and 5-oxoproline from chronic paracetamol use.

      Understanding anion gap in metabolic acidosis is crucial in identifying the underlying cause of the condition. It helps healthcare professionals in providing appropriate treatment and management to patients.

    • This question is part of the following fields:

      • Renal System
      484
      Seconds
  • Question 2 - An 85-year-old woman presents with a painful left leg and is diagnosed with...

    Correct

    • An 85-year-old woman presents with a painful left leg and is diagnosed with erysipelas. She is admitted and prescribed penicillin in accordance with trust guidelines. However, after two days of inpatient treatment, the patient becomes anuric and confused. A repeat set of U&Es reveals a significant increase in creatinine levels. What is the probable mechanism by which penicillin caused kidney injury in this elderly patient?

      Your Answer: Acute interstitial nephritis

      Explanation:

      AKI can be caused by penicillin due to its tendency to induce acute interstitial nephritis. This condition is characterized by inflammation in the renal interstitium and is known to occur with various medications, such as NSAIDs, antibiotics, and anticonvulsants. While the other choices may lead to acute kidney injury, they are not typically associated with penicillin antibiotics.

      Acute interstitial nephritis is a condition that is responsible for a quarter of all drug-induced acute kidney injuries. The most common cause of this condition is drugs, particularly antibiotics such as penicillin and rifampicin, as well as NSAIDs, allopurinol, and furosemide. Systemic diseases like SLE, sarcoidosis, and Sjögren’s syndrome, as well as infections like Hanta virus and staphylococci, can also cause acute interstitial nephritis. The histology of this condition shows marked interstitial oedema and interstitial infiltrate in the connective tissue between renal tubules. Symptoms of acute interstitial nephritis include fever, rash, arthralgia, eosinophilia, mild renal impairment, and hypertension. Sterile pyuria and white cell casts are common findings in investigations.

      Tubulointerstitial nephritis with uveitis (TINU) is a condition that typically affects young females. Symptoms of TINU include fever, weight loss, and painful, red eyes. Urinalysis is positive for leukocytes and protein.

    • This question is part of the following fields:

      • Renal System
      213.1
      Seconds
  • Question 3 - A 73-year-old man visits the urology clinic due to an elevated PSA level....

    Incorrect

    • A 73-year-old man visits the urology clinic due to an elevated PSA level. Despite undergoing a biopsy, there are no indications of cancer or benign prostatic hypertrophy.

      The patient has a medical history of diabetes mellitus, hypertension, scrotal varicocele, renal calculi, and acute urine retention.

      Out of his existing medical conditions, which one is the probable culprit for his increased PSA level?

      Your Answer: Hypertension

      Correct Answer: Urine retention

      Explanation:

      Urinary retention is a common cause of a raised PSA reading, as it can lead to bladder enlargement. Other conditions such as diabetes mellitus, hypertension, and renal calculi are not direct causes of elevated PSA levels.

      Understanding PSA Testing for Prostate Cancer

      Prostate specific antigen (PSA) is an enzyme produced by the prostate gland that has become an important marker for prostate cancer. However, there is still much debate about its usefulness as a screening tool. The NHS Prostate Cancer Risk Management Programme (PCRMP) has published guidelines on how to handle requests for PSA testing in asymptomatic men. While a recent European trial showed a reduction in prostate cancer deaths, there is also a high risk of over-diagnosis and over-treatment. As a result, the National Screening Committee has decided not to introduce a prostate cancer screening programme yet, but rather allow men to make an informed choice.

      PSA levels may be raised by various factors, including benign prostatic hyperplasia, prostatitis, ejaculation, vigorous exercise, urinary retention, and instrumentation of the urinary tract. However, PSA levels are not always a reliable indicator of prostate cancer. For example, around 20% of men with prostate cancer have a normal PSA level, while around 33% of men with a PSA level of 4-10 ng/ml will be found to have prostate cancer. To add greater meaning to a PSA level, age-adjusted upper limits and monitoring changes in PSA level over time (PSA velocity or PSA doubling time) are used. The PCRMP recommends age-adjusted upper limits for PSA levels, with a limit of 3.0 ng/ml for men aged 50-59 years, 4.0 ng/ml for men aged 60-69 years, and 5.0 ng/ml for men over 70 years old.

    • This question is part of the following fields:

      • Renal System
      44.6
      Seconds
  • Question 4 - A 65-year-old man visits the haemofiltration unit thrice a week for treatment. What...

    Incorrect

    • A 65-year-old man visits the haemofiltration unit thrice a week for treatment. What is responsible for detecting alterations in salt concentrations, such as sodium chloride, in normally functioning kidneys and adjusting the glomerular filtration rate accordingly?

      Your Answer: Juxtaglomerular cells

      Correct Answer: Macula densa

      Explanation:

      The macula densa is a specialized area of columnar tubule cells located in the final part of the ascending loop of Henle. These cells are in contact with the afferent arteriole and play a crucial role in detecting the concentration of sodium chloride in the convoluted tubules and ascending loop of Henle. This detection is affected by the glomerular filtration rate (GFR), which is increased by an increase in blood pressure. When the macula densa detects high sodium chloride levels, it releases ATP and adenosine, which constrict the afferent arteriole and lower GFR. Conversely, when low sodium chloride levels are detected, the macula densa releases nitric oxide, which acts as a vasodilator. The macula densa can also increase renin production from the juxtaglomerular cells.

      Juxtaglomerular cells are smooth muscle cells located mainly in the walls of the afferent arteriole. They act as baroreceptors to detect changes in blood pressure and can secrete renin.

      Mesangial cells are located at the junction of the afferent and efferent arterioles and, together with the juxtaglomerular cells and the macula densa, form the juxtaglomerular apparatus.

      Podocytes, which are modified simple squamous epithelial cells with foot-like projections, make up the innermost layer of the Bowman’s capsule surrounding the glomerular capillaries. They assist in glomerular filtration.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      42.3
      Seconds
  • Question 5 - A 26-year-old man falls and lands on a manhole cover, resulting in an...

    Incorrect

    • A 26-year-old man falls and lands on a manhole cover, resulting in an injury to his anterior bulbar urethra. Where is the likely location for the accumulation of extravasated urine?

      Your Answer: Lesser pelvis

      Correct Answer: Connective tissue of the scrotum

      Explanation:

      The section of the urethra located between the perineal membrane and the membranous layer of the superficial fascia is tightly bound to the ischiopubic rami. This prevents urine from leaking backwards as the two layers are seamlessly connected around the superficial transverse perineal muscles.

      Lower Genitourinary Tract Trauma: Types of Injury and Management

      Lower genitourinary tract trauma can occur due to blunt trauma, with most bladder injuries associated with pelvic fractures. However, these injuries can easily be overlooked during trauma assessment. Up to 10% of male pelvic fractures are associated with urethral or bladder injuries.

      Urethral injuries mainly occur in males and can be identified by blood at the meatus in 50% of cases. There are two types of urethral injury: bulbar rupture, which is the most common and often caused by straddle-type injuries such as bicycles, and membranous rupture, which can be extra or intraperitoneal and commonly caused by pelvic fractures. Penile or perineal oedema/hematoma and displacement of the prostate upwards during PR examination are also signs of urethral injury. An ascending urethrogram is used for investigation, and management involves surgical placement of a suprapubic catheter.

      External genitalia injuries, such as those to the penis and scrotum, can be caused by penetration, blunt trauma, continence- or sexual pleasure-enhancing devices, and mutilation.

      Bladder injuries can be intra or extraperitoneal and present with haematuria or suprapubic pain. A history of pelvic fracture and inability to void should always raise suspicion of bladder or urethral injury. Inability to retrieve all fluid used to irrigate the bladder through a Foley catheter also indicates bladder injury. IVU or cystogram is used for investigation, and management involves laparotomy if intraperitoneal and conservative treatment if extraperitoneal.

      In summary, lower genitourinary tract trauma can result in urethral or bladder injuries, which can be identified through various signs and symptoms. Proper investigation and management are crucial for successful treatment.

    • This question is part of the following fields:

      • Renal System
      12.3
      Seconds
  • Question 6 - A neonate was discovered to have an empty right scrotal sac during a...

    Correct

    • A neonate was discovered to have an empty right scrotal sac during a routine medical examination. The left testis is palpable in the scrotal sac, but an oval-shaped soft mass was discovered elsewhere. Further investigation and an ultrasound scan suggest the possibility of an ectopic testis.

      What is the most frequent location for this suspected condition in infants?

      Your Answer: Superficial inguinal pouch

      Explanation:

      Ectopic testis is most commonly found in the superficial inguinal pouch, followed by the perineum, femoral triangle, and contralateral scrotum.

      Common Testicular Disorders in Paediatric Urology

      Testicular disorders are frequently encountered in paediatric urological practice. One of the most common conditions is cryptorchidism, which refers to the failure of the testicle to descend from the abdominal cavity into the scrotum. It is important to differentiate between a undescended testis and a retractile testis. Ectopic testes are those that lie outside the normal path of embryological descent. Undescended testes occur in approximately 1% of male infants and should be placed in the scrotum after one year of age. Magnetic resonance imaging (MRI) may be used to locate intra-abdominal testes, but laparoscopy is often necessary in this age group. Testicular torsion is another common condition that presents with sudden onset of severe scrotal pain. Surgical exploration is the management of choice, and delay beyond six hours is associated with low salvage rates. Hydroceles, which are fluid-filled sacs in the scrotum or spermatic cord, may be treated with surgical ligation of the patent processus vaginalis or scrotal exploration in older children with cystic hydroceles.

      Overall, prompt diagnosis and appropriate management of testicular disorders are crucial in paediatric urology to prevent long-term complications and ensure optimal outcomes for patients.

    • This question is part of the following fields:

      • Renal System
      102.1
      Seconds
  • Question 7 - A woman presents with symptoms of agalactorrhoea, amenorrhoea, intolerance to cold, constipation, and...

    Correct

    • A woman presents with symptoms of agalactorrhoea, amenorrhoea, intolerance to cold, constipation, and weight loss six months after giving birth. She experienced postpartum bleeding during delivery and has now been diagnosed with hypopituitarism. What could be the possible reason for this condition?

      Your Answer: Sheehan's syndrome

      Explanation:

      Sheehan’s syndrome is a condition that arises from pituitary ischaemia, which is caused by blood loss during or after childbirth. The syndrome is characterized by symptoms that indicate global hypopituitarism, including agalactorrhoea (lack of prolactin), amenorrhoea (lack of FSH and LH), cold intolerance and constipation (lack of thyroid hormones), and weight loss (lack of steroid hormones).

      Malignancy is an uncommon cause of hypopituitarism.

      While pituitary adenoma is a frequent cause of hypopituitarism, it is unlikely to be the cause of this patient’s symptoms, given that they occurred after childbirth. Pituitary adenoma may also present with symptoms related to mass effect, such as headache and bilateral hemianopia.

      Understanding Hypopituitarism: Causes, Symptoms, and Management

      Hypopituitarism is a medical condition that occurs when the pituitary gland fails to produce enough hormones. This can be caused by various factors such as compression of the gland by non-secretory pituitary macroadenoma, pituitary apoplexy, Sheehan’s syndrome, hypothalamic tumors, trauma, iatrogenic irradiation, and infiltrative diseases like hemochromatosis and sarcoidosis. The symptoms of hypopituitarism depend on which hormones are deficient. For instance, low ACTH can cause tiredness and postural hypotension, while low FSH/LH can lead to amenorrhea, infertility, and loss of libido. Low TSH can cause constipation and feeling cold, while low GH can result in short stature if it occurs during childhood. Low prolactin can cause problems with lactation.

      To diagnose hypopituitarism, hormone profile testing and imaging are usually conducted. Treatment involves addressing the underlying cause, such as surgical removal of pituitary macroadenoma, and replacement of deficient hormones. It is important to manage hypopituitarism promptly to prevent complications and improve the patient’s quality of life.

    • This question is part of the following fields:

      • Renal System
      32.4
      Seconds
  • Question 8 - A 43-year-old man presents to his GP with a 3-month history of occasional...

    Correct

    • A 43-year-old man presents to his GP with a 3-month history of occasional frank haematuria. He has come in today as he began to experience intense, cramping loin pain over the weekend. Upon further questioning, the patient discloses that he has unintentionally lost 7kg of weight over the last 3 months.

      The patient has been a smoker of 20 cigarettes a day for the past 26 years and has a BMI of 36kg/m2.

      During the examination, a mass is palpated when balloting the kidneys. There are no other signs to elicit on examination.

      What is the most common histological subtype given the likely diagnosis?

      Your Answer: Clear cell

      Explanation:

      The most common subtype of renal cell carcinoma is clear cell, while squamous epithelial is a subtype of bladder cancer and not typically associated with renal carcinoma.

      Renal cell cancer, also known as hypernephroma, is a primary renal neoplasm that accounts for 85% of cases. It originates from the proximal renal tubular epithelium and is commonly associated with smoking and conditions such as von Hippel-Lindau syndrome and tuberous sclerosis. The clear cell subtype is the most prevalent, comprising 75-85% of tumors.

      Renal cell cancer is more common in middle-aged men and may present with classical symptoms such as haematuria, loin pain, and an abdominal mass. Other features include endocrine effects, such as the secretion of erythropoietin, parathyroid hormone-related protein, renin, and ACTH. Metastases are present in 25% of cases at presentation, and paraneoplastic syndromes such as Stauffer syndrome may also occur.

      The T category criteria for renal cell cancer are based on tumor size and extent of invasion. Management options include partial or total nephrectomy, depending on the tumor size and extent of disease. Patients with a T1 tumor are typically offered a partial nephrectomy, while alpha-interferon and interleukin-2 may be used to reduce tumor size and treat metastases. Receptor tyrosine kinase inhibitors such as sorafenib and sunitinib have shown superior efficacy compared to interferon-alpha.

      In summary, renal cell cancer is a common primary renal neoplasm that is associated with various risk factors and may present with classical symptoms and endocrine effects. Management options depend on the extent of disease and may include surgery and targeted therapies.

    • This question is part of the following fields:

      • Renal System
      77.9
      Seconds
  • Question 9 - A 72-year-old man, with a past medical history of diabetes, hypertension and stable...

    Incorrect

    • A 72-year-old man, with a past medical history of diabetes, hypertension and stable angina visits his family physician for a routine check-up. He is currently taking metoprolol, daily aspirin and insulin glargine. He lives alone and is able to manage his daily activities. He used to work as a teacher and his wife passed away from a stroke 5 years ago. During the examination, his heart rate is 60 beats per minute, respiratory rate is 14 breaths per minute and blood pressure is 125/80 mmHg. What is the direct effect of the metoprolol medication on this patient?

      Your Answer: Increase in urine excretion

      Correct Answer: Decrease in renin secretion

      Explanation:

      During the patient’s regular follow-up for diabetes and hypertension management, it was noted that both conditions increase the risk of cardiovascular complications and other related complications such as kidney and eye problems. To manage hypertension, the patient was prescribed metoprolol, a beta-blocker that reduces blood pressure by decreasing heart rate and cardiac output. Additionally, metoprolol blocks beta-1 adrenergic receptors in the juxtaglomerular apparatus of the kidneys, leading to a decrease in renin secretion. Renin is responsible for converting angiotensinogen to angiotensin I, which is further converted to angiotensin II, a hormone that increases blood pressure through vasoconstriction and sodium retention. By blocking renin secretion, metoprolol causes a decrease in blood pressure. Other antihypertensive medications work through different mechanisms, such as calcium channel blockers that dilate arterioles, ACE inhibitors that decrease angiotensin II secretion, and beta-blockers that decrease renin secretion.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      50.7
      Seconds
  • Question 10 - A 54-year-old man visits the clinic after his spouse was diagnosed with hypertension...

    Correct

    • A 54-year-old man visits the clinic after his spouse was diagnosed with hypertension and advised him to get his blood pressure checked. He has no symptoms. Upon measurement, his blood pressure is 155/92 mmHg. To further evaluate, a 24-hour blood pressure monitoring is scheduled. During the consultation, you discuss the physiology of blood pressure and mention the significance of the renin-angiotensin-aldosterone system in maintaining blood pressure homeostasis. Can you identify the primary site of aldosterone action in the kidney?

      Your Answer: Distal convoluted tubule and collecting duct of the nephron

      Explanation:

      Aldosterone functions in the distal convoluted tubule and collecting ducts of the nephron. Spironolactone is a diuretic that preserves potassium levels by blocking aldosterone receptors. The loop of Henle and Bowman’s capsule are located closer to the beginning of the nephron. Prostaglandins regulate the afferent arteriole of the glomerulus, causing vasodilation. NSAIDs can lead to renal failure by inhibiting prostaglandin production. The vasa recta are straight capillaries that run parallel to the loop of Henle in the kidney. To confirm a diagnosis of hypertension, NICE recommends a 24-hour ambulatory blood pressure reading to account for the potential increase in blood pressure in clinical settings.

      Aldosterone is a hormone that is primarily produced by the adrenal cortex in the zona glomerulosa. Its main function is to stimulate the reabsorption of sodium from the distal tubules, which results in the excretion of potassium. It is regulated by various factors such as angiotensin II, potassium, and ACTH, which increase its secretion. However, when there is an overproduction of aldosterone, it can lead to primary hyperaldosteronism, which is a common cause of secondary hypertension. This condition can be caused by an adrenal adenoma, which is also known as Conn’s syndrome. It is important to note that spironolactone, an aldosterone antagonist, can cause hyperkalemia.

    • This question is part of the following fields:

      • Renal System
      120.5
      Seconds
  • Question 11 - A patient diagnosed with chronic primary hyperparathyroidism underwent parathyroidectomy and is now being...

    Incorrect

    • A patient diagnosed with chronic primary hyperparathyroidism underwent parathyroidectomy and is now being seen for follow-up. The patient's postoperative blood results are as follows:

      Parathyroid hormone: 1.8 pmol/L (normal range: 1.6 - 6.9 pmol/L)
      Corrected calcium: 1.7 mmol/L (normal range: 2.1 - 2.6 mmol/L)
      Phosphate: 0.1 mmol/L (normal range: 0.1 - 0.8 mmol/L)

      What is the most likely explanation for these results?

      Your Answer: Scurvy

      Correct Answer: Hungry bone syndrome

      Explanation:

      The sudden drop in previously high parathyroid hormone levels can lead to hungry bone syndrome, which is a significant complication of a parathyroidectomy following chronic hyperparathyroidism. This condition causes hypocalcaemia and is rare but important to recognize. Osteomalacia, rickets, and scurvy are not consistent with this patient’s history and are not the correct answers.

      Understanding Hungry Bone Syndrome

      Hungry bone syndrome is a rare condition that can occur after a parathyroidectomy, especially if the patient has had hyperparathyroidism for a long time. The condition is caused by high levels of parathyroid hormone before surgery, which stimulate osteoclast activity and lead to demineralization of the bones, resulting in hypercalcemia. If left untreated, this can cause x-ray changes that resemble metastatic lytic lesions.

      During the parathyroidectomy, the parathyroid adenoma is removed, causing a rapid drop in hormone levels, which have a short half-life. As a result, osteoclast activity decreases, and the bones begin to rapidly re-mineralize, leading to hungry bone syndrome. This process can be uncomfortable and can also cause systemic hypocalcemia.

    • This question is part of the following fields:

      • Renal System
      110.6
      Seconds
  • Question 12 - A senior citizen who is unfamiliar to you arrives with seizures. A companion...

    Incorrect

    • A senior citizen who is unfamiliar to you arrives with seizures. A companion describes that he had been experiencing a prickling sensation around his mouth and muscle contractions in his extremities.

      What blood test outcomes would you anticipate from these indications?

      Your Answer: Hypophosphatemia

      Correct Answer: Hypocalcaemia

      Explanation:

      The correct answer is hypocalcaemia, which is characterized by perioral paraesthesia, cramps, tetany, and convulsions. Hypophosphatemia and hypokalaemia are not the most appropriate answers, as they would not cause these symptoms. Sepsis is also an incorrect answer.

      Hypocalcaemia: Symptoms and Signs

      Hypocalcaemia is a condition characterized by low levels of calcium in the blood. As calcium is essential for proper muscle and nerve function, many of the symptoms and signs of hypocalcaemia are related to neuromuscular excitability. The most common features of hypocalcaemia include muscle twitching, cramping, and spasms, as well as perioral paraesthesia. In chronic cases, patients may experience depression and cataracts. An electrocardiogram (ECG) may show a prolonged QT interval.

      Two specific signs that are commonly used to diagnose hypocalcaemia are Trousseau’s sign and Chvostek’s sign. Trousseau’s sign is observed when the brachial artery is occluded by inflating the blood pressure cuff and maintaining pressure above systolic. This causes wrist flexion and fingers to be drawn together, which is seen in around 95% of patients with hypocalcaemia and around 1% of normocalcaemic people. Chvostek’s sign is observed when tapping over the parotid gland causes facial muscles to twitch. This sign is seen in around 70% of patients with hypocalcaemia and around 10% of normocalcaemic people. Overall, hypocalcaemia can cause a range of symptoms and signs that are related to neuromuscular excitability, and specific diagnostic signs can be used to confirm the diagnosis.

    • This question is part of the following fields:

      • Renal System
      189.4
      Seconds
  • Question 13 - A 55-year-old woman who underwent laparoscopic cholecystectomy is being evaluated on postoperative day...

    Incorrect

    • A 55-year-old woman who underwent laparoscopic cholecystectomy is being evaluated on postoperative day 2. She reports multiple episodes of vomiting and passing urine only once since the operation. Her medical history includes poorly controlled hypertension on dual therapy. She is currently taking fenoldopam, ACE inhibitors, calcium channel blockers, atorvastatin, and paracetamol. On physical examination, she has dry mucous membranes and a BMI of 31 kg/m². Her vital signs show a mean arterial pressure of 80 mmHg and a heart rate of 110 beats per minute. Laboratory results reveal:

      Na+ 130 mmol/L (135 - 145)
      K+ 5.1 mmol/L (3.5 - 5.0)
      Creatinine 160 µmol/L (55 - 120)

      What is the most important medication that should be discontinued in this patient?

      Your Answer: Calcium channel blockers

      Correct Answer: ACE inhibitors

      Explanation:

      In cases of acute kidney injury (AKI), it is crucial to identify and treat the underlying cause. However, it is important to note that ACE inhibitors should be discontinued as they can worsen renal function by causing efferent arteriolar vasodilation, leading to a decrease in GFR. On the other hand, atorvastatin should not be stopped as it does not accumulate and worsen renal function, but frequent monitoring is necessary. If AKI is caused by rhabdomyolysis, then statins should be immediately discontinued. Calcium channel blockers do not exacerbate renal impairment, but it is advisable to reduce the dose and withhold them if clinical signs appear. Fenoldopam, on the other hand, does not impair kidney function but rather increases blood flow to the renal cortex and medullary regions by decreasing systemic vascular resistance.

      Acute kidney injury (AKI) is a condition where there is a reduction in renal function following an insult to the kidneys. It was previously known as acute renal failure and can result in long-term impaired kidney function or even death. AKI can be caused by prerenal, intrinsic, or postrenal factors. Patients with chronic kidney disease, other organ failure/chronic disease, a history of AKI, or who have used drugs with nephrotoxic potential are at an increased risk of developing AKI. To prevent AKI, patients at risk may be given IV fluids or have certain medications temporarily stopped.

      The kidneys are responsible for maintaining fluid balance and homeostasis, so a reduced urine output or fluid overload may indicate AKI. Symptoms may not be present in early stages, but as renal failure progresses, patients may experience arrhythmias, pulmonary and peripheral edema, or features of uraemia. Blood tests such as urea and electrolytes can be used to detect AKI, and urinalysis and imaging may also be necessary.

      Management of AKI is largely supportive, with careful fluid balance and medication review. Loop diuretics and low-dose dopamine are not recommended, but hyperkalaemia needs prompt treatment to avoid life-threatening arrhythmias. Renal replacement therapy may be necessary in severe cases. Patients with suspected AKI secondary to urinary obstruction require prompt review by a urologist, and specialist input from a nephrologist is required for cases where the cause is unknown or the AKI is severe.

    • This question is part of the following fields:

      • Renal System
      44.2
      Seconds
  • Question 14 - A 33-year-old woman is scheduled for a kidney biopsy following a renal ultrasound...

    Incorrect

    • A 33-year-old woman is scheduled for a kidney biopsy following a renal ultrasound that revealed several large cysts on her left kidney. The medical team has informed her of the potential risks associated with the procedure, such as the possibility of puncturing the primary blood vessels that supply the kidney - the renal artery and vein. At what anatomical level do these vessels enter the left kidney, considering their location?

      Your Answer: L4

      Correct Answer: L1

      Explanation:

      The correct level for the hilum of the left kidney is L1, which is also where the renal artery, vein, and ureter enter the kidney. T12 is not the correct level as it is the location of the adrenal glands or upper pole of the kidney. L2 is also not correct as it refers to the hilum of the right kidney, which is slightly lower. L4 is not the correct level as both renal arteries come off above this level from the abdominal aorta.

      Renal Anatomy: Understanding the Structure and Relations of the Kidneys

      The kidneys are two bean-shaped organs located in a deep gutter alongside the vertebral bodies. They measure about 11cm long, 5cm wide, and 3 cm thick, with the left kidney usually positioned slightly higher than the right. The upper pole of both kidneys approximates with the 11th rib, while the lower border is usually alongside L3. The kidneys are surrounded by an outer cortex and an inner medulla, which contains pyramidal structures that terminate at the renal pelvis into the ureter. The renal sinus lies within the kidney and contains branches of the renal artery, tributaries of the renal vein, major and minor calyces, and fat.

      The anatomical relations of the kidneys vary depending on the side. The right kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, and transversus abdominis, while the left kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, transversus abdominis, stomach, pancreas, spleen, and distal part of the small intestine. Each kidney and suprarenal gland is enclosed within a common layer of investing fascia, derived from the transversalis fascia, which is divided into anterior and posterior layers (Gerotas fascia).

      At the renal hilum, the renal vein lies most anteriorly, followed by the renal artery (an end artery), and the ureter lies most posteriorly. Understanding the structure and relations of the kidneys is crucial in diagnosing and treating renal diseases and disorders.

    • This question is part of the following fields:

      • Renal System
      116
      Seconds
  • Question 15 - A 57-year-old male is scheduled for an elective robotic-assisted laparoscopic radical prostatectomy.

    During...

    Correct

    • A 57-year-old male is scheduled for an elective robotic-assisted laparoscopic radical prostatectomy.

      During the procedure, there is a risk of urinary retention if the nerves responsible for providing parasympathetic innervation to the bladder are damaged. Can you correctly identify these nerves?

      Your Answer: Pelvic splanchnic nerves

      Explanation:

      The bladder is innervated by parasympathetic and sympathetic nerves. Parasympathetic nerves come from the pelvic splanchnic nerves, while sympathetic nerves come from L1 and L2 via the hypogastric nerve plexuses. Injury to these nerves can cause urinary retention. The vesicoprostatic venous plexus receives venous drainage from the bladder and prostate. The inferior vesical nerve is not a real nerve.

      Bladder Anatomy and Innervation

      The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.

    • This question is part of the following fields:

      • Renal System
      42.1
      Seconds
  • Question 16 - A 65-year-old woman with chronic kidney failure has been instructed by her nephrologist...

    Correct

    • A 65-year-old woman with chronic kidney failure has been instructed by her nephrologist to adhere to a 'renal diet'. She visits you to gain more knowledge about this.

      What is typically recommended to individuals with chronic kidney disease?

      Your Answer: Low potassium diet

      Explanation:

      Dietary Recommendations for Chronic Kidney Disease Patients

      Chronic kidney disease patients are recommended to follow a specific diet that is low in protein, phosphate, sodium, and potassium. This dietary advice is given to reduce the strain on the kidneys, as these substances are typically excreted by the kidneys. By limiting the intake of these nutrients, patients can help slow the progression of their kidney disease and manage their symptoms more effectively. It is important for patients to work closely with their healthcare provider or a registered dietitian to ensure they are meeting their nutritional needs while following these dietary restrictions. With proper guidance and adherence to this diet, patients with chronic kidney disease can improve their overall health and quality of life.

    • This question is part of the following fields:

      • Renal System
      12.7
      Seconds
  • Question 17 - A 65-year-old man comes to the clinic for a medication review. He reports...

    Correct

    • A 65-year-old man comes to the clinic for a medication review. He reports no negative effects and wishes to continue his current treatment. After conducting a blood test, you notice that his serum potassium level is slightly elevated. Which of the following frequently prescribed drugs is linked to an increase in serum potassium?

      Your Answer: Ramipril

      Explanation:

      Ramipril is the correct answer. Before starting ACE inhibitor therapy, a baseline potassium level is measured because these drugs can cause an increase in serum potassium.

      Loop diuretics like furosemide can cause hypokalaemia and hyponatraemia.

      Salbutamol does not lead to hyperkalaemia and can actually be used to lower serum potassium levels in emergency situations.

      Taking paracetamol within recommended doses does not affect potassium levels.

      Drugs and their Effects on Potassium Levels

      Many commonly prescribed drugs have the potential to alter the levels of potassium in the bloodstream. Some drugs can decrease the amount of potassium in the blood, while others can increase it.

      Drugs that can decrease serum potassium levels include thiazide and loop diuretics, as well as acetazolamide. On the other hand, drugs that can increase serum potassium levels include ACE inhibitors, angiotensin-2 receptor blockers, spironolactone, and potassium-sparing diuretics like amiloride and triamterene. Additionally, taking potassium supplements like Sando-K or Slow-K can also increase potassium levels in the blood.

      It’s important to note that the above list does not include drugs used to temporarily decrease serum potassium levels for patients with hyperkalaemia, such as salbutamol or calcium resonium.

      Overall, it’s crucial for healthcare providers to be aware of the potential effects of medications on potassium levels and to monitor patients accordingly.

    • This question is part of the following fields:

      • Renal System
      44.3
      Seconds
  • Question 18 - A 62-year-old male with type 2 diabetes is urgently referred by his GP...

    Incorrect

    • A 62-year-old male with type 2 diabetes is urgently referred by his GP due to poor glycaemic control for the past three days, with home blood glucose readings around 25 mmol/L. He is currently being treated with metformin and lisinopril. Yesterday, his GP checked his U+E and found that his serum sodium was 138 mmol/L (137-144), serum potassium was 5.8 mmol/L (3.5-4.9), serum urea was 20 mmol/L (2.5-7.5), and serum creatinine was 350 µmol/L (60-110). On examination, he has a temperature of 39°C, a pulse of 108 bpm, a blood pressure of 96/60 mmHg, a respiratory rate of 32/min, and oxygen saturations of 99% on air. His cardiovascular, respiratory, and abdominal examination are otherwise normal. Further investigations reveal a plasma glucose level of 17 mmol/L (3.0-6.0) and urine analysis showing blood ++ and protein ++, but ketones are negative. What is the likely diagnosis?

      Your Answer: Hyperosmolar non-ketotic state

      Correct Answer: Sepsis

      Explanation:

      The causes of septic shock are important to understand in order to provide appropriate treatment and improve patient outcomes. Septic shock can cause fever, hypotension, and renal failure, as well as tachypnea due to metabolic acidosis. However, it is crucial to rule out other conditions such as hyperosmolar hyperglycemic state or diabetic ketoacidosis, which have different symptoms and diagnostic criteria.

      While metformin can contribute to acidosis, it is unlikely to be the primary cause in this case. Diabetic patients may be prone to renal tubular acidosis, but this is not likely to be the cause of an acute presentation. Instead, a type IV renal tubular acidosis, characterized by hyporeninaemic hypoaldosteronism, may be a more likely association.

      Overall, it is crucial to carefully evaluate patients with septic shock and consider all possible causes of their symptoms. By ruling out other conditions and identifying the underlying cause of the acidosis, healthcare providers can provide targeted treatment and improve patient outcomes. Further research and education on septic shock and its causes can also help to improve diagnosis and treatment in the future.

    • This question is part of the following fields:

      • Renal System
      45.1
      Seconds
  • Question 19 - A 70-year-old man visits the endocrinology clinic complaining of muscle cramps, headaches, and...

    Correct

    • A 70-year-old man visits the endocrinology clinic complaining of muscle cramps, headaches, and lethargy. During the clinic visit, his vital signs are heart rate 80/min, respiratory rate 18/min, blood pressure 150/100 mmHg, temperature 36.5ºC, and saturations 99% on air. Recent blood tests reveal:

      - Na+ 147 mmol/L (135 - 145)
      - K+ 3.2 mmol/L (3.5 - 5.0)
      - Bicarbonate 28 mmol/L (22 - 29)
      - Urea 6.0 mmol/L (2.0 - 7.0)
      - Creatinine 95 µmol/L (55 - 120)

      An adrenal mass is detected on his abdominal CT scan. Can you identify where the hormone responsible for his symptoms is produced?

      Your Answer: Zona glomerulosa

      Explanation:

      The correct answer is the zona glomerulosa. This patient is experiencing symptoms of hyperaldosteronism, which is likely caused by an adenoma in the zona glomerulosa, as indicated by the mass seen on CT scan (also known as Conn’s syndrome). The adenoma stimulates the production of aldosterone, leading to hypertension and hypokalemia.

      The adrenal medulla produces catecholamines, such as adrenaline and noradrenaline.

      The juxtaglomerular apparatus is located in the kidney and produces renin in response to decreased renal perfusion.

      The zona fasciculata is the middle layer of the adrenal cortex and is responsible for producing glucocorticoids, such as cortisol.

      The zona reticularis is the innermost layer of the adrenal cortex and produces androgens, such as dehydroepiandrosterone (DHEA).

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      54
      Seconds
  • Question 20 - A 50-year-old woman presents to her GP with a complaint of generalised puffiness....

    Incorrect

    • A 50-year-old woman presents to her GP with a complaint of generalised puffiness. She has been feeling lethargic and noticed swelling in her hands, feet, and face over the past few weeks. Additionally, she has been experiencing shortness of breath on exertion and cannot lie flat, frequently waking up at night gasping for air. She also reports tingling and loss of sensation in both feet, which has now extended to her knees. She has no regular medications and is otherwise healthy.

      Upon examination, the patient has decreased sensation over the distal lower limbs and hepatomegaly. Urine dipstick reveals protein +++ and urinalysis reveals hyperalbuminuria. Serology shows hypoalbuminaemia and hyperlipidaemia. An outpatient echocardiogram reveals both systolic and diagnostic heart failure, with a restrictive filling pattern. The Mantoux skin test was negative.

      What is the probable mechanism behind this patient's condition?

      Your Answer: Deposition of heavy chain fragments

      Correct Answer: Deposition of light chain fragments

      Explanation:

      The deposition of light chain fragments in various tissues is the most common cause of amyloidosis (AL), which can present with symptoms such as nephrotic syndrome, heart failure, and peripheral neuropathy.

      Symptoms in the upper respiratory tract and kidneys are typically seen in granulomatosis with polyangiitis (GPA), which is caused by anti-neutrophil cytoplasmic antibody-induced inflammation. Therefore, this answer is not applicable.

      Tuberculosis is caused by Mycobacterium, but the absence of pulmonary features and negative Mantoux skin test make it unlikely in this case. Therefore, this answer is not applicable.

      Amyloidosis is a condition that can occur in different forms. The most common type is AL amyloidosis, which is caused by the accumulation of immunoglobulin light chain fragments. This can be due to underlying conditions such as myeloma, Waldenstrom’s, or MGUS. Symptoms of AL amyloidosis can include nephrotic syndrome, cardiac and neurological issues, macroglossia, and periorbital eccymoses.

      Another type of amyloidosis is AA amyloid, which is caused by the buildup of serum amyloid A protein, an acute phase reactant. This form of amyloidosis is often seen in patients with chronic infections or inflammation, such as TB, bronchiectasis, or rheumatoid arthritis. The most common symptom of AA amyloidosis is renal involvement.

      Beta-2 microglobulin amyloidosis is another form of the condition, which is caused by the accumulation of beta-2 microglobulin, a protein found in the major histocompatibility complex. This type of amyloidosis is often seen in patients who are on renal dialysis.

    • This question is part of the following fields:

      • Renal System
      66
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Renal System (12/20) 60%
Passmed