-
Question 1
Correct
-
A newborn with clubbed feet passes away shortly after birth due to severe respiratory distress. The mother did not receive any prenatal care. Autopsy reveals pulmonary hypoplasia.
What other clinical manifestations are likely to be present?Your Answer: Bilateral renal agenesis and oligohydramnios
Explanation:Potter sequence is a condition characterized by oligohydramnios, which can be caused by renal diseases like bilateral renal agenesis, ARPKD, and ADPKD. This condition often leads to pulmonary hypoplasia, clubbed feet, and cranial anomalies in neonates. However, oesophageal atresia, which causes polyhydramnios, is not associated with Potter sequence.
Understanding Autosomal Recessive Polycystic Kidney Disease (ARPKD)
Autosomal recessive polycystic kidney disease (ARPKD) is a rare genetic disorder that affects the kidneys and liver. Unlike the more common autosomal dominant polycystic kidney disease (ADPKD), ARPKD is caused by a defect in a gene on chromosome 6 that encodes fibrocystin, a protein essential for normal renal tubule development.
ARPKD is typically diagnosed during prenatal ultrasound or in early infancy when abdominal masses and renal failure are observed. Newborns with ARPKD may also exhibit features consistent with Potter’s syndrome due to oligohydramnios. The disease progresses rapidly, and end-stage renal failure usually develops in childhood. In addition to kidney involvement, patients with ARPKD often have liver complications such as portal and interlobular fibrosis.
Renal biopsy is a common diagnostic tool for ARPKD, which typically shows multiple cylindrical lesions at right angles to the cortical surface. Early diagnosis and management are crucial in improving outcomes for patients with ARPKD.
-
This question is part of the following fields:
- Renal System
-
-
Question 2
Incorrect
-
A 70-year-old woman presents to the emergency department with confusion and drowsiness, discovered by her carers at home. She has experienced three episodes of vomiting and complains of a headache. Earlier in the day, she was unable to recognise her carers and is now communicating with short, nonsensical phrases.
Based on her medical history of type 2 diabetes and stage 3 chronic kidney disease, along with the results of a CT head scan showing generalised cerebral and cerebellar oedema with narrowed ventricles and effaced sulci and cisterns, what is the most likely cause of this patient's symptoms?Your Answer: Severe hypovolaemia
Correct Answer: Hyponatraemia
Explanation:Severe hyponatraemia can lead to cerebral oedema, which is likely the cause of the patient’s symptoms of confusion, headache, and drowsiness. The patient’s history of chronic kidney disease and use of thiazide diuretics increase her risk of developing hyponatraemia. Thiazides inhibit urinary dilution, leading to reduced reabsorption of NaCl in the distal renal tubules and an increased risk of hyponatraemia. In severe cases, hyponatraemia can cause a decrease in plasma osmolality, resulting in water movement into the brain and cerebral oedema.
Hypocalcaemia is not associated with cerebral oedema and can be ruled out based on the CT findings. Hypomagnesaemia is typically asymptomatic unless severe and is not associated with cerebral oedema. Hypophosphataemia is uncommon in patients with renal disease and does not present with symptoms similar to those described in the vignette. Severe hypovolemia is not indicated in this case, as there is no evidence of reduced skin turgor, dry mucous membranes, reduced urine output, or other signs of hypovolaemic shock. However, it should be noted that rapid volume correction in hypovolaemic shock can also lead to cerebral oedema.
Hyponatremia is a condition where the sodium levels in the blood are too low. If left untreated, it can lead to cerebral edema and brain herniation. Therefore, it is important to identify and treat hyponatremia promptly. The treatment plan depends on various factors such as the duration and severity of hyponatremia, symptoms, and the suspected cause. Over-rapid correction can lead to osmotic demyelination syndrome, which is a serious complication.
Initial steps in treating hyponatremia involve ruling out any errors in the test results and reviewing medications that may cause hyponatremia. For chronic hyponatremia without severe symptoms, the treatment plan varies based on the suspected cause. If it is hypovolemic, normal saline may be given as a trial. If it is euvolemic, fluid restriction and medications such as demeclocycline or vaptans may be considered. If it is hypervolemic, fluid restriction and loop diuretics or vaptans may be considered.
For acute hyponatremia with severe symptoms, patients require close monitoring in a hospital setting. Hypertonic saline is used to correct the sodium levels more quickly than in chronic cases. Vaptans, which act on V2 receptors, can be used but should be avoided in patients with hypovolemic hyponatremia and those with underlying liver disease.
It is important to avoid over-correction of severe hyponatremia as it can lead to osmotic demyelination syndrome. Symptoms of this condition include dysarthria, dysphagia, paralysis, seizures, confusion, and coma. Therefore, sodium levels should only be raised by 4 to 6 mmol/L in a 24-hour period to prevent this complication.
-
This question is part of the following fields:
- Renal System
-
-
Question 3
Incorrect
-
A 67-year-old man is undergoing a radical cystectomy due to T2 non-invasive bladder cancer. As a medical student shadowing the urological surgeons during the procedure, I was asked to identify the origin of the inferior and superior vesical arteries that needed to be ligated.
Your Answer: Renal artery
Correct Answer: Internal iliac artery
Explanation:The internal iliac artery is the correct answer as it supplies the pelvis, including the bladder, and gives rise to the superior and inferior vesical arteries.
The direct branch of the aorta is an incorrect answer as it refers to the origin of major vessels, not specifically related to the bladder.
The external iliac artery is also an incorrect answer as it continues into the leg and does not supply the bladder.
Similarly, the inferior mesenteric artery is an incorrect answer as it supplies the hind-gut of the digestive tract and is not directly related to the bladder.
Bladder Anatomy and Innervation
The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.
-
This question is part of the following fields:
- Renal System
-
-
Question 4
Incorrect
-
A 47-year-old man is found to have a tumor in his right adrenal gland. The surgical plan is to remove it through an open anterior approach. What tool or technique will be most beneficial during the procedure?
Your Answer: Division of the ligament of Treitz
Correct Answer: Mobilisation of the colonic hepatic flexure
Explanation:In open adrenal surgery from an anterior approach, it is customary to perform mobilization of the hepatic flexure and right colon. However, mobilization of the liver is typically not necessary.
Adrenal Gland Anatomy
The adrenal glands are located superomedially to the upper pole of each kidney. The right adrenal gland is posteriorly related to the diaphragm, inferiorly related to the kidney, medially related to the vena cava, and anteriorly related to the hepatorenal pouch and bare area of the liver. On the other hand, the left adrenal gland is postero-medially related to the crus of the diaphragm, inferiorly related to the pancreas and splenic vessels, and anteriorly related to the lesser sac and stomach.
The arterial supply of the adrenal glands is through the superior adrenal arteries from the inferior phrenic artery, middle adrenal arteries from the aorta, and inferior adrenal arteries from the renal arteries. The right adrenal gland drains via one central vein directly into the inferior vena cava, while the left adrenal gland drains via one central vein into the left renal vein.
In summary, the adrenal glands are small but important endocrine glands located above the kidneys. They have a unique blood supply and drainage system, and their location and relationships with other organs in the body are crucial for their proper functioning.
-
This question is part of the following fields:
- Renal System
-
-
Question 5
Correct
-
A 64-year-old man is seen in the endocrinology clinic for review of his type II diabetes. He is currently on metformin and gliclazide, but his HbA1c is 68 mmol/mol. To improve his glycaemic control, you plan to initiate empagliflozin as a third agent. What is the site of action of this medication to achieve its mechanism of action?
Your Answer: Proximal convoluted tubule of the nephron
Explanation:The proximal convoluted tubule of the nephron is where the majority of glucose reabsorption occurs. Empagliflozin, which inhibits the SGLT-2 receptor, prevents glucose reabsorption in this area. Insulin receptors are found throughout the body, not SGLT-2 receptors. The distal convoluted tubule regulates sodium, potassium, calcium, and pH, while the loop of Henle is involved in water resorption. Sulphonylureas act on pancreatic beta cells to increase insulin production and improve glucose metabolism.
The Loop of Henle and its Role in Renal Physiology
The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.
-
This question is part of the following fields:
- Renal System
-
-
Question 6
Correct
-
A 42-year-old woman is undergoing left kidney donation surgery for her sister. During the procedure, which structure will be located most anteriorly at the hilum of the left kidney?
Your Answer: Left renal vein
Explanation:The anterior position is occupied by the renal veins, while the artery and ureter are located posteriorly.
Anatomy of the Renal Arteries
The renal arteries are blood vessels that supply the kidneys with oxygenated blood. They are direct branches off the aorta and enter the kidney at the hilum. The right renal artery is longer than the left renal artery. The renal vein, artery, and pelvis also enter the kidney at the hilum.
The right renal artery is related to the inferior vena cava, right renal vein, head of the pancreas, and descending part of the duodenum. On the other hand, the left renal artery is related to the left renal vein and tail of the pancreas.
In some cases, there may be accessory arteries, mainly on the left side. These arteries usually pierce the upper or lower part of the kidney instead of entering at the hilum.
Before reaching the hilum, each renal artery divides into four or five segmental branches that supply each pyramid and cortex. These segmental branches then divide within the sinus into lobar arteries. Each vessel also gives off small inferior suprarenal branches to the suprarenal gland, ureter, and surrounding tissue and muscles.
-
This question is part of the following fields:
- Renal System
-
-
Question 7
Incorrect
-
A 51-year-old man comes to the clinic to discuss the findings of his ambulatory blood pressure test, which revealed an average blood pressure of 156/94mmHg. As a first-line treatment for hypertension in this age group, you suggest starting him on ACE inhibitors. These medications work by inhibiting the activity of angiotensin-converting-enzyme. What is the primary location of angiotensin-converting-enzyme in the body?
Your Answer: Liver
Correct Answer: Lungs
Explanation:The lungs contain the majority of angiotensin-converting-enzyme, with smaller amounts found in endothelial cells of the vasculature and kidney epithelial cells. Its role in the renin-angiotensin-aldosterone system involves converting angiotensin I to angiotensin II.
Aldosterone, produced in the zona glomerulosa of the adrenal cortex, is a crucial compound in the renin-angiotensin-aldosterone system. Angiotensinogen, the precursor to angiotensin I, is produced in the liver and converted by renin, which is produced in the juxtaglomerular cells of the kidneys.
The pancreas does not play a role in the renin-angiotensin-aldosterone system, but produces and releases insulin and glucagon among other hormones. Based on the World Health Organisation classification of hypertension, the patient in the question has mild hypertension. Current NICE guidelines recommend lifestyle advice and ACE inhibitors for patients under 55 years old with mild hypertension.
The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.
-
This question is part of the following fields:
- Renal System
-
-
Question 8
Correct
-
A 30-year-old man presents to the emergency department with complaints of abdominal pain, nausea, and vomiting for a few hours. He has a history of type 1 diabetes mellitus, which is managed with insulin. He admits to running out of his insulin a few days ago. On examination, his temperature is 37.8ºC, pulse is 120/min, respirations are 25/min, and blood pressure is 100/70 mmHg. Dry mucous membranes are noted, and he has a fruity odour on his breath.
The following laboratory results are obtained:
Hb 142 g/L Male: (135-180)
Female: (115 - 160)
Platelets 250 * 109/L (150 - 400)
WBC 11.2 * 109/L (4.0 - 11.0)
Na+ 138 mmol/L (135 - 145)
K+ 5.2 mmol/L (3.5 - 5.0)
Urea 2.8 mmol/L (2.0 - 7.0)
Creatinine 110 µmol/L (55 - 120)
Glucose 28 mmol/L (4 - 7)
Which of the following laboratory findings is most likely to be seen in this patient?Your Answer: PH 7.1; pCO2 2.3 kPa; Anion Gap 21
Explanation:The patient is experiencing diabetic ketoacidosis, which results in a raised anion gap metabolic acidosis. To determine the correct answer, we must eliminate options with a normal or raised pH (7.4 and 7.5), as well as those with respiratory acidosis (as the patient has an increased respiratory rate and should have a low pCO2). The anion gap is also a crucial factor, with a normal range of 3 to 16. Therefore, the correct option is the one with an anion gap of 21.
Understanding Metabolic Acidosis
Metabolic acidosis is a condition that can be classified based on the anion gap, which is calculated by subtracting the sum of chloride and bicarbonate from the sum of sodium and potassium. The normal range for anion gap is 10-18 mmol/L. If a question provides the chloride level, it may be an indication to calculate the anion gap.
Hyperchloraemic metabolic acidosis is a type of metabolic acidosis with a normal anion gap. It can be caused by gastrointestinal bicarbonate loss, prolonged diarrhea, ureterosigmoidostomy, fistula, renal tubular acidosis, drugs like acetazolamide, ammonium chloride injection, and Addison’s disease. On the other hand, raised anion gap metabolic acidosis is caused by lactate, ketones, urate, acid poisoning, and other factors.
Lactic acidosis is a type of metabolic acidosis that is caused by high lactate levels. It can be further classified into two types: lactic acidosis type A, which is caused by sepsis, shock, hypoxia, and burns, and lactic acidosis type B, which is caused by metformin. Understanding the different types and causes of metabolic acidosis is important in diagnosing and treating the condition.
-
This question is part of the following fields:
- Renal System
-
-
Question 9
Correct
-
A 65-year-old woman with a past medical history of heart failure presents to the emergency department complaining of palpitations. During the history-taking process, it is revealed that she takes ramipril and paracetamol regularly, but her cardiologist prescribed a new medication a week ago. She is unsure of the name of the medication but describes it as a 'water pill'. An electrocardiogram is performed, which shows abnormal tall T waves. What is the name of the 'water pill' that was recently prescribed?
Your Answer: Spironolactone (potassium-sparing diuretic)
Explanation:Spironolactone is a medication that works as an aldosterone antagonist in the cortical collecting duct. It is used to treat various conditions such as ascites, hypertension, heart failure, nephrotic syndrome, and Conn’s syndrome. In patients with cirrhosis, spironolactone is often prescribed in relatively large doses of 100 or 200 mg to counteract secondary hyperaldosteronism. It is also used as a NICE ‘step 4’ treatment for hypertension. In addition, spironolactone has been shown to reduce all-cause mortality in patients with NYHA III + IV heart failure who are already taking an ACE inhibitor, according to the RALES study.
However, spironolactone can cause adverse effects such as hyperkalaemia and gynaecomastia, although the latter is less common with eplerenone. It is important to monitor potassium levels in patients taking spironolactone to prevent hyperkalaemia, which can lead to serious complications such as cardiac arrhythmias. Overall, spironolactone is a useful medication for treating various conditions, but its potential adverse effects should be carefully considered and monitored.
-
This question is part of the following fields:
- Renal System
-
-
Question 10
Correct
-
A 60-year-old patient visits the renal clinic after being diagnosed with stage 4 chronic kidney disease due to hypertension and diabetes. She inquires about the recommended diet for her condition.
What dietary advice should be provided to the patient?Your Answer: Low protein, phosphate, potassium and sodium
Explanation:For individuals with chronic kidney disease, it is recommended to follow a diet that is low in protein, phosphate, potassium, and sodium. This is because protein can produce ammonia, which is not effectively excreted by the kidneys in CKD. Phosphate can combine with calcium to form kidney stones, while sodium can raise blood pressure and further damage the kidneys. Potassium is also not efficiently eliminated by failing kidneys and can lead to irregular heartbeats.
Dietary Recommendations for Chronic Kidney Disease Patients
Chronic kidney disease patients are recommended to follow a specific diet that is low in protein, phosphate, sodium, and potassium. This dietary advice is given to reduce the strain on the kidneys, as these substances are typically excreted by the kidneys. By limiting the intake of these nutrients, patients can help slow the progression of their kidney disease and manage their symptoms more effectively. It is important for patients to work closely with their healthcare provider or a registered dietitian to ensure they are meeting their nutritional needs while following these dietary restrictions. With proper guidance and adherence to this diet, patients with chronic kidney disease can improve their overall health and quality of life.
-
This question is part of the following fields:
- Renal System
-
-
Question 11
Incorrect
-
A 6-year-old boy arrives at the paediatric emergency department with a non-blanching rash. He is limping and complaining of abdominal pain. He had a recent bout of tonsillitis but is typically healthy. Upon examination, there are numerous palpable purpura in a symmetrical pattern, mainly on his buttocks and the backs of his legs. A urine dipstick reveals mild proteinuria and 2+ blood.
What is the probable underlying pathophysiology of this presentation?Your Answer: ANCA associated vasculitis
Correct Answer: IgA mediated small vessel vasculitis
Explanation:The correct answer is IgA mediated small vessel vasculitis, specifically Henoch-Schonlein purpura (HSP). This condition is characterized by palpable purpura, arthralgia, abdominal pain, and haematuria, and typically affects children aged 4-6 years. HSP is often triggered by infections such as streptococcal pharyngitis, but can also be caused by other infections like Mycoplasma pneumoniae, Epstein-Barr virus, and adenovirus.
The other options are incorrect. ANCA-associated vasculitis typically involves the respiratory and ENT systems, which this child does not have. Cryoglobulinaemic vasculitis is associated with hepatitis C, haematological malignancies, and autoimmune disease, none of which are present in this case. Deficiency of von Willebrand factor cleaving protein is a feature of TTP, which is rare in children and typically presents with a low platelet count. ITP is another autoimmune condition that can present similarly to HSP, but can be differentiated by a low platelet count.
Understanding Henoch-Schonlein Purpura
Henoch-Schonlein purpura (HSP) is a type of small vessel vasculitis that is mediated by IgA. It is often associated with IgA nephropathy, also known as Berger’s disease. HSP is commonly observed in children following an infection.
The condition is characterized by a palpable purpuric rash, which is accompanied by localized oedema over the buttocks and extensor surfaces of the arms and legs. Other symptoms include abdominal pain and polyarthritis. In some cases, patients may also experience haematuria and renal failure, which are indicative of IgA nephropathy.
Treatment for HSP typically involves analgesia for arthralgia. While there is inconsistent evidence for the use of steroids and immunosuppressants, supportive care is generally recommended for patients with nephropathy. The prognosis for HSP is usually excellent, particularly in children without renal involvement. However, it is important to monitor blood pressure and urinalysis to detect any signs of progressive renal involvement. Approximately one-third of patients may experience a relapse.
In summary, Henoch-Schonlein purpura is a self-limiting condition that is often seen in children following an infection. While the symptoms can be uncomfortable, the prognosis is generally good. However, it is important to monitor patients for any signs of renal involvement and provide appropriate supportive care.
-
This question is part of the following fields:
- Renal System
-
-
Question 12
Incorrect
-
A 68-year-old male presents with a 6-month history of polyuria and polydipsia. He has a medical history of hypertension, bipolar disorder, and osteoarthritis, and is currently taking naproxen, ramipril, amlodipine, and lithium. His HbA1c level is 41 mmol/mol. A water deprivation test is performed, and the pre-test urine osmolality is 210 mOsm/kg (500-850), while the post-test urine osmolality is 240 mOsm/kg (500-850). Based on the likely diagnosis, which anatomical location has been affected?
Your Answer: Distal convoluted tubule
Correct Answer: Collecting duct
Explanation:Lithium use in patients can lead to diabetes insipidus by desensitizing the kidney’s response to ADH in the collecting ducts. This is likely the cause of diabetes insipidus in the patient described, as they are on lithium and have no signs of cranial diabetes insipidus. Cranial diabetes insipidus typically results from head trauma or pituitary surgery, while nephrogenic diabetes insipidus is caused by kidney dysfunction.
The posterior pituitary gland releases ADH, and dysfunction at this site can cause cranial diabetes insipidus. An anterior pituitary tumor may present with bilateral hemianopia, as this gland secretes several hormones.
Thiazide diuretics act on the distal convoluted tubule and are used to treat diabetes insipidus. Gitelman syndrome is caused by a mutation in the Na+-Cl− co-transporter, while Fanconi syndrome results from dysfunction in the proximal renal tubule, leading to an inability to absorb certain substances.
Diabetes insipidus is a medical condition that can be caused by either a decreased secretion of antidiuretic hormone (ADH) from the pituitary gland (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be caused by various factors such as head injury, pituitary surgery, and infiltrative diseases like sarcoidosis. On the other hand, nephrogenic DI can be caused by genetic factors, electrolyte imbalances, and certain medications like lithium and demeclocycline. The common symptoms of DI are excessive urination and thirst. Diagnosis is made through a water deprivation test and checking the osmolality of the urine. Treatment options include thiazides and a low salt/protein diet for nephrogenic DI, while central DI can be treated with desmopressin.
-
This question is part of the following fields:
- Renal System
-
-
Question 13
Incorrect
-
A 54-year-old man visits the clinic after his spouse was diagnosed with hypertension and advised him to get his blood pressure checked. He has no symptoms. Upon measurement, his blood pressure is 155/92 mmHg. To further evaluate, a 24-hour blood pressure monitoring is scheduled. During the consultation, you discuss the physiology of blood pressure and mention the significance of the renin-angiotensin-aldosterone system in maintaining blood pressure homeostasis. Can you identify the primary site of aldosterone action in the kidney?
Your Answer: Vasa recta of the kidney
Correct Answer: Distal convoluted tubule and collecting duct of the nephron
Explanation:Aldosterone functions in the distal convoluted tubule and collecting ducts of the nephron. Spironolactone is a diuretic that preserves potassium levels by blocking aldosterone receptors. The loop of Henle and Bowman’s capsule are located closer to the beginning of the nephron. Prostaglandins regulate the afferent arteriole of the glomerulus, causing vasodilation. NSAIDs can lead to renal failure by inhibiting prostaglandin production. The vasa recta are straight capillaries that run parallel to the loop of Henle in the kidney. To confirm a diagnosis of hypertension, NICE recommends a 24-hour ambulatory blood pressure reading to account for the potential increase in blood pressure in clinical settings.
Aldosterone is a hormone that is primarily produced by the adrenal cortex in the zona glomerulosa. Its main function is to stimulate the reabsorption of sodium from the distal tubules, which results in the excretion of potassium. It is regulated by various factors such as angiotensin II, potassium, and ACTH, which increase its secretion. However, when there is an overproduction of aldosterone, it can lead to primary hyperaldosteronism, which is a common cause of secondary hypertension. This condition can be caused by an adrenal adenoma, which is also known as Conn’s syndrome. It is important to note that spironolactone, an aldosterone antagonist, can cause hyperkalemia.
-
This question is part of the following fields:
- Renal System
-
-
Question 14
Incorrect
-
A 32-year-old male is undergoing renal transplant surgery. Shortly after the donor kidney has been inserted, the transplanted organ begins to lose its color and becomes limp. Is hyperacute transplant rejection the likely cause of this? What is the underlying mechanism behind it?
Your Answer: Mast cell degranulation
Correct Answer: Pre-existing recipient antibodies against donor HLA/ABO antigens
Explanation:Hyperacute transplant rejection is a rapid rejection of a donor organ that can occur within minutes to hours after transplantation. This rejection is caused by pre-existing antibodies against ABO or HLA antigens in the donor organ. If the rejection is widespread, it can activate the coagulation cascade and lead to occlusive thrombosis of the donated organ. Donor organs are carefully matched to recipients to minimize the risk of rejection.
Mast cell degranulation is an allergic reaction that is mediated by IgE and results in the release of histamine.
Acute rejection occurs days to weeks after transplantation and is an inflammatory process against the donated organ. Immunosuppressives can be used to slow down this process.
Chronic rejection occurs months to years after transplantation and is characterized by atrophy of the organ and arteriosclerosis, rather than acute inflammatory processes.
Graft vs Host disease occurs when donor T-cells mount a cell-mediated response against host tissues. This can lead to cholestasis, jaundice, a widespread rash, and diarrhea. It typically occurs within the first year following transplantation.
The HLA system, also known as the major histocompatibility complex (MHC), is located on chromosome 6 and is responsible for human leucocyte antigens. Class 1 antigens include A, B, and C, while class 2 antigens include DP, DQ, and DR. When matching for a renal transplant, the importance of HLA antigens is ranked as DR > B > A.
Graft survival rates for renal transplants are high, with a 90% survival rate at one year and a 60% survival rate at ten years for cadaveric transplants. Living-donor transplants have even higher survival rates, with a 95% survival rate at one year and a 70% survival rate at ten years. However, postoperative problems can occur, such as acute tubular necrosis of the graft, vascular thrombosis, urine leakage, and urinary tract infections.
Hyperacute rejection can occur within minutes to hours after a transplant and is caused by pre-existing antibodies against ABO or HLA antigens. This type of rejection is an example of a type II hypersensitivity reaction and leads to widespread thrombosis of graft vessels, resulting in ischemia and necrosis of the transplanted organ. Unfortunately, there is no treatment available for hyperacute rejection, and the graft must be removed.
Acute graft failure, which occurs within six months of a transplant, is usually due to mismatched HLA and is caused by cell-mediated cytotoxic T cells. This type of failure is usually asymptomatic and is detected by a rising creatinine, pyuria, and proteinuria. Other causes of acute graft failure include cytomegalovirus infection, but it may be reversible with steroids and immunosuppressants.
Chronic graft failure, which occurs after six months of a transplant, is caused by both antibody and cell-mediated mechanisms that lead to fibrosis of the transplanted kidney, known as chronic allograft nephropathy. The recurrence of the original renal disease, such as MCGN, IgA, or FSGS, can also cause chronic graft failure.
-
This question is part of the following fields:
- Renal System
-
-
Question 15
Incorrect
-
A 44-year-old man presents with a three-week history of leg swelling. He has no past medical history except for a bout of sore throat at the age of 15. He is not on any medications. On examination, his blood pressure is 155/94 mmHg, and he has pitting edema. Urinalysis reveals 4+ protein with no RBC casts. A biopsy confirms the diagnosis of membranous glomerulonephritis.
What is the most probable cause of this patient's condition?Your Answer: Hypertension
Correct Answer: Anti-phospholipase A2 antibodies
Explanation:The likely diagnosis for this patient is idiopathic membranous glomerulonephritis, which is associated with anti-phospholipase A2 antibodies. While hypertension may be present in patients with nephrotic syndrome, it is not the cause of membranous glomerulonephritis. Secondary causes of membranous glomerulonephritis include malignancy (such as lung cancer, lymphoma, or leukemia) and systemic lupus erythematosus, but there are no indications of these in this patient. Sore throat is associated with post-streptococcal glomerulonephritis and IgA nephropathy, but these are not relevant to this case.
Membranous glomerulonephritis is the most common type of glomerulonephritis in adults and is the third leading cause of end-stage renal failure. It typically presents with proteinuria or nephrotic syndrome. A renal biopsy will show a thickened basement membrane with subepithelial electron dense deposits, creating a spike and dome appearance. The condition can be caused by various factors, including infections, malignancy, drugs, autoimmune diseases, and idiopathic reasons.
Management of membranous glomerulonephritis involves the use of ACE inhibitors or ARBs to reduce proteinuria and improve prognosis. Immunosuppression may be necessary for patients with severe or progressive disease, but many patients spontaneously improve. Corticosteroids alone are not effective, and a combination of corticosteroid and another agent such as cyclophosphamide is often used. Anticoagulation may be considered for high-risk patients.
The prognosis for membranous glomerulonephritis follows the rule of thirds: one-third of patients experience spontaneous remission, one-third remain proteinuric, and one-third develop end-stage renal failure. Good prognostic factors include female sex, young age at presentation, and asymptomatic proteinuria of a modest degree at the time of diagnosis.
-
This question is part of the following fields:
- Renal System
-
-
Question 16
Incorrect
-
Which one of the following structures is not located behind the left kidney?
Your Answer: 12th rib
Correct Answer: 10th rib
Explanation:Renal Anatomy: Understanding the Structure and Relations of the Kidneys
The kidneys are two bean-shaped organs located in a deep gutter alongside the vertebral bodies. They measure about 11cm long, 5cm wide, and 3 cm thick, with the left kidney usually positioned slightly higher than the right. The upper pole of both kidneys approximates with the 11th rib, while the lower border is usually alongside L3. The kidneys are surrounded by an outer cortex and an inner medulla, which contains pyramidal structures that terminate at the renal pelvis into the ureter. The renal sinus lies within the kidney and contains branches of the renal artery, tributaries of the renal vein, major and minor calyces, and fat.
The anatomical relations of the kidneys vary depending on the side. The right kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, and transversus abdominis, while the left kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, transversus abdominis, stomach, pancreas, spleen, and distal part of the small intestine. Each kidney and suprarenal gland is enclosed within a common layer of investing fascia, derived from the transversalis fascia, which is divided into anterior and posterior layers (Gerotas fascia).
At the renal hilum, the renal vein lies most anteriorly, followed by the renal artery (an end artery), and the ureter lies most posteriorly. Understanding the structure and relations of the kidneys is crucial in diagnosing and treating renal diseases and disorders.
-
This question is part of the following fields:
- Renal System
-
-
Question 17
Incorrect
-
A 24-year-old male patient visits his GP after observing swelling in his legs. He mentions that his urine has turned frothy. Upon conducting blood tests, the doctor discovers elevated cholesterol levels and reduced albumin.
What type of electrolyte imbalances should the GP anticipate in this individual?Your Answer: Hypovolaemic hypernatraemia
Correct Answer: Hypervolaemic hyponatraemia
Explanation:Hypervolaemic hyponatraemia can be caused by nephrotic syndrome.
Nephrotic syndrome is characterized by oedema, proteinuria, hypercholesterolaemia, and hypoalbuminaemia. It results in fluid retention, which can lead to hypervolaemic hyponatraemia. Urinary sodium levels would not show an increase if tested.
Understanding Hyponatraemia: Causes and Diagnosis
Hyponatraemia is a condition that can be caused by either an excess of water or a depletion of sodium in the body. However, it is important to note that there are also cases of pseudohyponatraemia, which can be caused by factors such as hyperlipidaemia or taking blood from a drip arm. To diagnose hyponatraemia, doctors often look at the levels of urinary sodium and osmolarity.
If the urinary sodium level is above 20 mmol/l, it may indicate sodium depletion due to renal loss or the use of diuretics such as thiazides or loop diuretics. Other possible causes include Addison’s disease or the diuretic stage of renal failure. On the other hand, if the patient is euvolaemic, it may be due to conditions such as SIADH (urine osmolality > 500 mmol/kg) or hypothyroidism.
If the urinary sodium level is below 20 mmol/l, it may indicate sodium depletion due to extrarenal loss caused by conditions such as diarrhoea, vomiting, sweating, burns, or adenoma of rectum. Alternatively, it may be due to water excess, which can cause the patient to be hypervolaemic and oedematous. This can be caused by conditions such as secondary hyperaldosteronism, nephrotic syndrome, IV dextrose, or psychogenic polydipsia.
In summary, hyponatraemia can be caused by a variety of factors, and it is important to diagnose the underlying cause in order to provide appropriate treatment. By looking at the levels of urinary sodium and osmolarity, doctors can determine the cause of hyponatraemia and provide the necessary interventions.
-
This question is part of the following fields:
- Renal System
-
-
Question 18
Correct
-
A 73-year-old man comes to the clinic with complaints of increasing nocturia, a feeble urinary stream, and some weight loss in the past few months. Upon examination, an enlarged prostate with nodules is observed, and he is promptly referred for further testing, which reveals prostate cancer cells.
During the local urology cancer multidisciplinary team meeting, his case is discussed, and the team recommends a course of bicalutamide. What is the mechanism of action of this medication?Your Answer: Androgen receptor blocker
Explanation:Bicalutamide, a non-steroidal drug, is utilized in the treatment of prostate cancer as an androgen receptor blocker. It is often used in combination with other approaches such as hormonal treatment, radiotherapy, chemotherapy, and prostatectomy. Abiraterone, on the other hand, is an androgen synthesis blocker that inhibits enzymes required for production. It is typically used for hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after anti-androgen therapy has failed. Goserelin is a gonadotrophin-releasing hormone (GnRH) agonist that ultimately downregulates sex hormones. It is initially co-prescribed with an anti-androgen due to its potential to cause an initial flare in testosterone levels. More recently, GnRH antagonists like abarelix have been used to quickly suppress testosterone without the initial flare seen with agonists. Cyproterone acetate, which exhibits progestogenic activity and steroidal and antiandrogenic effects, is another drug used in prostate cancer management but is less commonly used due to the widespread use of non-steroidal drugs like bicalutamide.
Prostate cancer management varies depending on the stage of the disease and the patient’s life expectancy and preferences. For localized prostate cancer (T1/T2), treatment options include active monitoring, watchful waiting, radical prostatectomy, and radiotherapy (external beam and brachytherapy). For localized advanced prostate cancer (T3/T4), options include hormonal therapy, radical prostatectomy, and radiotherapy. Patients may develop proctitis and are at increased risk of bladder, colon, and rectal cancer following radiotherapy for prostate cancer.
In cases of metastatic prostate cancer, reducing androgen levels is a key aim of treatment. A combination of approaches is often used, including anti-androgen therapy, synthetic GnRH agonist or antagonists, bicalutamide, cyproterone acetate, abiraterone, and bilateral orchidectomy. GnRH agonists, such as Goserelin (Zoladex), initially cause a rise in testosterone levels before falling to castration levels. To prevent a rise in testosterone, anti-androgens are often used to cover the initial therapy. GnRH antagonists, such as degarelix, are being evaluated to suppress testosterone while avoiding the flare phenomenon. Chemotherapy with docetaxel is also an option for the treatment of hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after androgen deprivation therapy has failed, and before chemotherapy is indicated.
-
This question is part of the following fields:
- Renal System
-
-
Question 19
Incorrect
-
A 5-year-old boy comes to his family doctor with a purple rash on his buttocks and behind his knees. His parents have observed that his urine has been slightly pink for the past few days. The boy had recently recuperated from a mild cold. The doctor suspects that he may have an IgA-mediated small vessel vasculitis.
What is the suspected diagnosis of this condition?Your Answer: Kawasaki disease
Correct Answer: Henoch-Schonlein purpura
Explanation:The correct answer is Henoch-Schonlein purpura, which is a type of small vessel vasculitis mediated by IgA. It typically affects children who have recently had a viral infection and is characterized by a purplish rash on the buttocks and flexor surfaces of the upper and lower limbs. Treatment is mainly supportive.
Granulomatosis with polyangitis is not the correct answer as it is a different type of vasculitis that is not IgA-mediated. It usually presents with a triad of upper respiratory symptoms (such as sinusitis and epistaxis), lower respiratory tract symptoms (like cough and haemoptysis), and glomerulonephritis (which causes haematuria and proteinuria leading to frothy urine).
Kawasaki disease is another type of vasculitis that affects children, but it is a medium vessel vasculitis triggered by unknown mechanisms. The classic presentation includes prolonged fever (lasting over 5 days) and redness of the eyes, hands, and feet. There may also be mucosal involvement with the characteristic strawberry tongue.
Minimal change disease is the most common cause of nephrotic syndrome in young children. It can also be associated with a preceding viral infection, but it does not present with a purplish rash. Instead, it is characterized by facial swelling and frothy urine.
Understanding Henoch-Schonlein Purpura
Henoch-Schonlein purpura (HSP) is a type of small vessel vasculitis that is mediated by IgA. It is often associated with IgA nephropathy, also known as Berger’s disease. HSP is commonly observed in children following an infection.
The condition is characterized by a palpable purpuric rash, which is accompanied by localized oedema over the buttocks and extensor surfaces of the arms and legs. Other symptoms include abdominal pain and polyarthritis. In some cases, patients may also experience haematuria and renal failure, which are indicative of IgA nephropathy.
Treatment for HSP typically involves analgesia for arthralgia. While there is inconsistent evidence for the use of steroids and immunosuppressants, supportive care is generally recommended for patients with nephropathy. The prognosis for HSP is usually excellent, particularly in children without renal involvement. However, it is important to monitor blood pressure and urinalysis to detect any signs of progressive renal involvement. Approximately one-third of patients may experience a relapse.
In summary, Henoch-Schonlein purpura is a self-limiting condition that is often seen in children following an infection. While the symptoms can be uncomfortable, the prognosis is generally good. However, it is important to monitor patients for any signs of renal involvement and provide appropriate supportive care.
-
This question is part of the following fields:
- Renal System
-
-
Question 20
Incorrect
-
A 65-year-old patient is admitted to the hospital with a chief complaint of lethargy and a vague medical history. As part of the assessment, a venous blood gas (VBG) is performed and the results are as follows:
Na+ 137 mmol/L (135 - 145)
K+ 3.0 mmol/L (3.5 - 5.0)
Cl- 105 mEq/L (98 - 106)
pH 7.29 (7.35-7.45)
pO2 42mmHg (35 - 45)
pCO2 46mmHg (42 - 48)
HCO3- 19 mmol/L (22 - 26)
BE -3 mmol/L (-2 to +2)
What is the most likely cause of this patient's presentation?Your Answer: Diabetic ketoacidosis
Correct Answer: Diarrhoea
Explanation:The likely cause of the patient’s normal anion gap metabolic acidosis is diarrhoea. The anion gap calculation shows a normal range of 14 mmol/L, which is within the normal range of 8-14 mmol/L. Diarrhoea causes a loss of bicarbonate from the GI tract, resulting in less alkali to balance out the acid in the blood. Additionally, diarrhoea causes hypokalaemia due to potassium ion loss from the GI tract. COPD, Cushing’s syndrome, and diabetic ketoacidosis are incorrect options as they would result in respiratory acidosis, metabolic alkalosis, and raised anion gap metabolic acidosis, respectively.
Understanding Metabolic Acidosis
Metabolic acidosis is a condition that can be classified based on the anion gap, which is calculated by subtracting the sum of chloride and bicarbonate from the sum of sodium and potassium. The normal range for anion gap is 10-18 mmol/L. If a question provides the chloride level, it may be an indication to calculate the anion gap.
Hyperchloraemic metabolic acidosis is a type of metabolic acidosis with a normal anion gap. It can be caused by gastrointestinal bicarbonate loss, prolonged diarrhea, ureterosigmoidostomy, fistula, renal tubular acidosis, drugs like acetazolamide, ammonium chloride injection, and Addison’s disease. On the other hand, raised anion gap metabolic acidosis is caused by lactate, ketones, urate, acid poisoning, and other factors.
Lactic acidosis is a type of metabolic acidosis that is caused by high lactate levels. It can be further classified into two types: lactic acidosis type A, which is caused by sepsis, shock, hypoxia, and burns, and lactic acidosis type B, which is caused by metformin. Understanding the different types and causes of metabolic acidosis is important in diagnosing and treating the condition.
-
This question is part of the following fields:
- Renal System
-
-
Question 21
Incorrect
-
A 59-year-old man comes to the GP complaining of lower back pain, weight loss, an abdominal mass, and visible haematuria. The GP eliminates the possibility of a UTI and refers him through a 2-week wait pathway. An ultrasound reveals a tumour, and a biopsy confirms renal cell carcinoma. From which part of the kidney does his cancer originate?
Your Answer: Transitional cell
Correct Answer: Proximal renal tubular epithelium
Explanation:Renal cell carcinoma originates from the proximal renal tubular epithelium, while the other options, such as blood vessels, distal renal tubular epithelium, and glomerular basement membrane, are all parts of the kidney but not the site of origin for renal cell carcinoma. Transitional cell carcinoma, on the other hand, arises from the transitional cells in the lining of the renal pelvis.
Renal cell cancer, also known as hypernephroma, is a primary renal neoplasm that accounts for 85% of cases. It originates from the proximal renal tubular epithelium and is commonly associated with smoking and conditions such as von Hippel-Lindau syndrome and tuberous sclerosis. The clear cell subtype is the most prevalent, comprising 75-85% of tumors.
Renal cell cancer is more common in middle-aged men and may present with classical symptoms such as haematuria, loin pain, and an abdominal mass. Other features include endocrine effects, such as the secretion of erythropoietin, parathyroid hormone-related protein, renin, and ACTH. Metastases are present in 25% of cases at presentation, and paraneoplastic syndromes such as Stauffer syndrome may also occur.
The T category criteria for renal cell cancer are based on tumor size and extent of invasion. Management options include partial or total nephrectomy, depending on the tumor size and extent of disease. Patients with a T1 tumor are typically offered a partial nephrectomy, while alpha-interferon and interleukin-2 may be used to reduce tumor size and treat metastases. Receptor tyrosine kinase inhibitors such as sorafenib and sunitinib have shown superior efficacy compared to interferon-alpha.
In summary, renal cell cancer is a common primary renal neoplasm that is associated with various risk factors and may present with classical symptoms and endocrine effects. Management options depend on the extent of disease and may include surgery and targeted therapies.
-
This question is part of the following fields:
- Renal System
-
-
Question 22
Incorrect
-
A 68-year-old man visits the clinic with a complaint of persistent hiccups that have been ongoing for 5 days. During the consultation, he mentions feeling increasingly fatigued over the past 7 months. Apart from these issues, he reports no other health concerns. After conducting some blood tests, you discover that he is experiencing renal failure, and his potassium levels are at 6.2 (normal range is 3.5-5 mmol/l). You urgently advise him to go to the hospital, and upon arrival, the medical team requests an ECG to check for signs of hyperkalaemia. What is an ECG indication of hyperkalaemia?
Your Answer: Prominent U waves
Correct Answer: Wide QRS complexes
Explanation:Hyperkalaemia can be identified on an ECG by the presence of broad QRS complexes, which may appear bizarre and form a sinusoidal waveform. Other signs include tall-tented T waves and small or absent P waves. Asystole can also occur as a result of hyperkalaemia.
On the other hand, hypokalaemia can be identified by ECG signs such as small or inverted T waves, ST segment depression, and prominent U waves. A prolonged PR interval and long QT interval may also be present, although a short PR interval may suggest pre-excitation or an AV nodal rhythm.
In the case of a patient presenting with hiccups, persistent hiccups may indicate uraemia, which can be caused by renal failure. Fatigue is another common symptom of renal failure, which is also a common cause of hyperkalaemia.
Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.
There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.
It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.
-
This question is part of the following fields:
- Renal System
-
-
Question 23
Incorrect
-
A 9-year-old boy comes to the GP after experiencing bloody diarrhoea for the past 6 days. He complains of abdominal pain and has been urinating very little. His mother has also noticed multiple bruises on his body without any known cause. What is the most probable organism responsible for his symptoms?
Your Answer: Norovirus
Correct Answer: E. coli
Explanation:The patient’s symptoms suggest that they may be suffering from haemolytic uraemic syndrome (HUS), which is often caused by an infection with E.coli 0157:H7.
HUS is characterized by a combination of haemolytic anaemia, thrombocytopaenia, and acute kidney injury, which can ultimately lead to renal failure.
The presence of bloody diarrhoea in the patient’s medical history is a significant indicator of HUS. Additionally, the reduced urine output is likely due to the acute kidney injury, while the bruising may be a result of the thrombocytopaenia associated with HUS.
Understanding Haemolytic Uraemic Syndrome
Haemolytic uraemic syndrome (HUS) is a condition that primarily affects young children and is characterized by a triad of symptoms, including acute kidney injury, microangiopathic haemolytic anaemia, and thrombocytopenia. The most common cause of HUS in children is Shiga toxin-producing Escherichia coli (STEC) 0157:H7, which accounts for over 90% of cases. Other causes of HUS include pneumococcal infection, HIV, systemic lupus erythematosus, drugs, and cancer.
To diagnose HUS, doctors may perform a full blood count, check for evidence of STEC infection in stool culture, and conduct PCR for Shiga toxins. Treatment for HUS is supportive and may include fluids, blood transfusion, and dialysis if required. Antibiotics are not recommended, despite the preceding diarrhoeal illness in many patients. The indications for plasma exchange in HUS are complicated, and as a general rule, plasma exchange is reserved for severe cases of HUS not associated with diarrhoea. Eculizumab, a C5 inhibitor monoclonal antibody, has shown greater efficiency than plasma exchange alone in the treatment of adult atypical HUS.
In summary, HUS is a serious condition that primarily affects young children and is characterized by a triad of symptoms. The most common cause of HUS in children is STEC 0157:H7, and diagnosis may involve various tests. Treatment is supportive, and antibiotics are not recommended. The indications for plasma exchange are complicated, and eculizumab may be more effective in treating adult atypical HUS.
-
This question is part of the following fields:
- Renal System
-
-
Question 24
Correct
-
A woman in her 30s experiences dehydration from diarrhoea and vomiting, leading to activation of the renin-angiotensin-aldosterone system by her kidneys. This increases the pressure across the glomerulus and maintains glomerular filtration rate. What is the normal passage of blood through this area?
Your Answer: afferent arteriole- glomerular capillary bed- efferent arteriole- peritubular capillaries and medullary vasa recta
Explanation:The journey of blood to a nephron begins with the afferent arteriole, followed by the glomerular capillary bed, efferent arteriole, and finally the peritubular capillaries and medullary vasa recta.
The afferent arteriole is the first stage, where blood enters the nephron. From there, it flows through the glomerulus and exits through the efferent arteriole.
If the efferent arteriole is constricted, it can increase pressure across the glomerulus, leading to a higher filtration fraction and maintaining eGFR.
The Loop of Henle and its Role in Renal Physiology
The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.
-
This question is part of the following fields:
- Renal System
-
-
Question 25
Incorrect
-
A 67-year-old man is attending the urology clinic and receiving goserelin for his metastatic prostate cancer. Can you explain the drug's mechanism of action?
Your Answer: Inhibits 5 alpha reductase enzyme
Correct Answer: Overstimulation of GnRH receptors
Explanation:GnRH agonists used in the treatment of prostate cancer can paradoxically lead to lower LH levels in the long term. This is because chronic use of these agonists can result in overstimulation of GnRH receptors, which in turn disrupts endogenous hormonal feedback systems. While initially stimulating the production of LH/FSH and subsequent androgen production, chronic use of GnRH agonists can cause negative feedback to suppress the release of gonadotropins, resulting in a significant decrease in serum testosterone levels. This mechanism can be thought of as switching on to switch off. It is important to note that inhibiting the 5 alpha-reductase enzyme and relaxing prostatic smooth muscle are not mechanisms of action for GnRH agonists, but rather for other medications used in the treatment of prostate conditions.
Prostate cancer management varies depending on the stage of the disease and the patient’s life expectancy and preferences. For localized prostate cancer (T1/T2), treatment options include active monitoring, watchful waiting, radical prostatectomy, and radiotherapy (external beam and brachytherapy). For localized advanced prostate cancer (T3/T4), options include hormonal therapy, radical prostatectomy, and radiotherapy. Patients may develop proctitis and are at increased risk of bladder, colon, and rectal cancer following radiotherapy for prostate cancer.
In cases of metastatic prostate cancer, reducing androgen levels is a key aim of treatment. A combination of approaches is often used, including anti-androgen therapy, synthetic GnRH agonist or antagonists, bicalutamide, cyproterone acetate, abiraterone, and bilateral orchidectomy. GnRH agonists, such as Goserelin (Zoladex), initially cause a rise in testosterone levels before falling to castration levels. To prevent a rise in testosterone, anti-androgens are often used to cover the initial therapy. GnRH antagonists, such as degarelix, are being evaluated to suppress testosterone while avoiding the flare phenomenon. Chemotherapy with docetaxel is also an option for the treatment of hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after androgen deprivation therapy has failed, and before chemotherapy is indicated.
-
This question is part of the following fields:
- Renal System
-
-
Question 26
Incorrect
-
A 55-year-old man, who has a history of type 2 diabetes, is prescribed losartan for his hypertension due to the development of a dry cough from ramipril. Losartan works by inhibiting the activity of a substance that acts on the AT1 receptor.
What accurately characterizes the function of this substance?Your Answer: Decreases filtration fraction through vasoconstriction of the efferent arteriole of the glomerulus to preserve GFR
Correct Answer: Increases filtration fraction through vasoconstriction of the efferent arteriole of the glomerulus to preserve GFR
Explanation:Angiotensin II is responsible for increasing the filtration fraction by constricting the efferent arteriole of the glomerulus, which helps to maintain the glomerular filtration rate (GFR). This mechanism has been found to slow down the progression of diabetic nephropathy. AT1 receptor blockers such as azilsartan, candesartan, and olmesartan can also block the action of Ang II. Desmopressin activates aquaporin, which is mainly located in the collecting duct of the kidneys. Norepinephrine and epinephrine, not Ang II, can cause vasoconstriction of the afferent arteriole of the glomerulus.
The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.
-
This question is part of the following fields:
- Renal System
-
-
Question 27
Incorrect
-
A 29-year-old female patient complains of dysuria and frequent urination for the past 3 days. She denies experiencing any vaginal discharge or heavy menstrual bleeding. Upon urine dipstick examination, leukocytes and nitrites are detected. A urine culture reveals the presence of a urease-producing bacteria identified as Proteus mirabilis. The patient is prescribed antibiotics for treatment.
What type of renal stones are patients at risk for developing with chronic and recurrent infections caused by this bacteria?Your Answer: Calcium oxalate
Correct Answer: Ammonium magnesium phosphate (struvite)
Explanation:The formation of kidney stones is a common condition that involves the accumulation of mineral deposits in the kidneys. This condition is influenced by various risk factors such as low urine volume, dry weather conditions, and acidic pH levels. It is also closely linked to hyperuricemia, which is commonly associated with gout, as well as diseases that involve high cell turnover, such as leukemia.
Renal stones can be classified into different types based on their composition. Calcium oxalate stones are the most common, accounting for 85% of all calculi. These stones are formed due to hypercalciuria, hyperoxaluria, and hypocitraturia. They are radio-opaque and may also bind with uric acid stones. Cystine stones are rare and occur due to an inherited recessive disorder of transmembrane cystine transport. Uric acid stones are formed due to purine metabolism and may precipitate when urinary pH is low. Calcium phosphate stones are associated with renal tubular acidosis and high urinary pH. Struvite stones are formed from magnesium, ammonium, and phosphate and are associated with chronic infections. The pH of urine can help determine the type of stone present, with calcium phosphate stones forming in normal to alkaline urine, uric acid stones forming in acidic urine, and struvate stones forming in alkaline urine. Cystine stones form in normal urine pH.
-
This question is part of the following fields:
- Renal System
-
-
Question 28
Incorrect
-
A 95-year-old man is discovered collapsed in his residence and is transported to the hospital. Upon examination, he is diagnosed with dehydration and hypotension, prompting the release of renin by the juxtaglomerular cells. What is the mechanism of action of renin?
Your Answer: Hydrolyse angiotensin I to form angiotensin II
Correct Answer: Hydrolyse angiotensinogen to form angiotensin I
Explanation:Angiotensin I is formed when renin breaks down angiotensinogen, which is a process that occurs within the renin-angiotensin-aldosterone system and is facilitated by juxtaglomerular cells.
The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.
-
This question is part of the following fields:
- Renal System
-
-
Question 29
Incorrect
-
A 58-year-old woman is having surgery for Conns syndrome and experiences bleeding due to damage to the middle adrenal artery. Where does this vessel originate from?
Your Answer: Splenic artery
Correct Answer: Aorta
Explanation:The aorta usually gives rise to the middle adrenal artery, while the renal vessels typically give rise to the lower adrenal artery.
Adrenal Gland Anatomy
The adrenal glands are located superomedially to the upper pole of each kidney. The right adrenal gland is posteriorly related to the diaphragm, inferiorly related to the kidney, medially related to the vena cava, and anteriorly related to the hepato-renal pouch and bare area of the liver. On the other hand, the left adrenal gland is postero-medially related to the crus of the diaphragm, inferiorly related to the pancreas and splenic vessels, and anteriorly related to the lesser sac and stomach.
The arterial supply of the adrenal glands is through the superior adrenal arteries from the inferior phrenic artery, middle adrenal arteries from the aorta, and inferior adrenal arteries from the renal arteries. The right adrenal gland drains via one central vein directly into the inferior vena cava, while the left adrenal gland drains via one central vein into the left renal vein.
In summary, the adrenal glands are small but important endocrine glands located above the kidneys. They have a unique blood supply and drainage system, and their location and relationships with other organs in the body are crucial for their proper functioning.
-
This question is part of the following fields:
- Renal System
-
-
Question 30
Incorrect
-
A 15-year-old teenage boy comes to see his General Practitioner with swelling in his left scrotum. He reports no pain or other symptoms. During examination in a supine position, the GP notes that the left testicle is smaller than the right and there are no abnormal masses on either side. The GP diagnoses the patient with a varicocele, which is caused by increased hydrostatic pressure in the venous plexus of the left scrotum. The question is, where does the left testicular (gonadal) vein drain into?
Your Answer: Left great saphenous vein
Correct Answer: Left renal vein
Explanation:The left renal vein receives drainage from the left testicular vein, while the common iliac and internal iliac veins do not receive any blood from the testicles. The internal iliac veins collect blood from the pelvic internal organs and join the external iliac vein, which drains blood from the legs, to form the common iliac vein. On the other hand, the right testicular vein directly drains into the inferior vena cava since it is situated to the right of the midline. The great saphenous veins, which are located superficially, collect blood from the toes.
Scrotal Problems: Epididymal Cysts, Hydrocele, and Varicocele
Epididymal cysts are the most frequent cause of scrotal swellings seen in primary care. They are usually found posterior to the testicle and separate from the body of the testicle. Epididymal cysts may be associated with polycystic kidney disease, cystic fibrosis, or von Hippel-Lindau syndrome. Diagnosis is usually confirmed by ultrasound, and management is typically supportive. However, surgical removal or sclerotherapy may be attempted for larger or symptomatic cysts.
Hydrocele refers to the accumulation of fluid within the tunica vaginalis. They can be communicating or non-communicating. Communicating hydroceles are common in newborn males and usually resolve within the first few months of life. Non-communicating hydroceles are caused by excessive fluid production within the tunica vaginalis. Hydroceles may develop secondary to epididymo-orchitis, testicular torsion, or testicular tumors. Diagnosis may be clinical, but ultrasound is required if there is any doubt about the diagnosis or if the underlying testis cannot be palpated. Management depends on the severity of the presentation, and further investigation, such as ultrasound, is usually warranted to exclude any underlying cause such as a tumor.
Varicocele is an abnormal enlargement of the testicular veins. They are usually asymptomatic but may be important as they are associated with infertility. Varicoceles are much more common on the left side and are classically described as a bag of worms. Diagnosis is made through ultrasound with Doppler studies. Management is usually conservative, but occasionally surgery is required if the patient is troubled by pain. There is ongoing debate regarding the effectiveness of surgery to treat infertility.
-
This question is part of the following fields:
- Renal System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)