-
Question 1
Incorrect
-
A pair of adolescents are fooling around with an airgun when one mistakenly shoots his buddy in the stomach. The injured friend is rushed to the ER where he is examined. The bullet has entered just to the right of the rectus sheath at the level of the 2nd lumbar vertebrae. Which of the following structures is the most probable to have been harmed by the bullet?
Your Answer: Right adrenal gland
Correct Answer: Fundus of the gallbladder
Explanation:The most superficially located structure is the fundus of the gallbladder, which is found at this level.
Anatomical Planes and Levels in the Human Body
The human body can be divided into different planes and levels to aid in anatomical study and medical procedures. One such plane is the transpyloric plane, which runs horizontally through the body of L1 and intersects with various organs such as the pylorus of the stomach, left kidney hilum, and duodenojejunal flexure. Another way to identify planes is by using common level landmarks, such as the inferior mesenteric artery at L3 or the formation of the IVC at L5.
In addition to planes and levels, there are also diaphragm apertures located at specific levels in the body. These include the vena cava at T8, the esophagus at T10, and the aortic hiatus at T12. By understanding these planes, levels, and apertures, medical professionals can better navigate the human body during procedures and accurately diagnose and treat various conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 2
Incorrect
-
Your next patient, Emily, is a 26-year-old female who is an avid athlete. She arrives at the emergency department with an arm injury. After a basic x-ray, it is revealed that she has a humerus shaft fracture.
Considering the probable nerve damage, which of the subsequent movements will Emily have difficulty with?Your Answer: Opposition of the thumb
Correct Answer: Wrist extension
Explanation:The radial nerve is susceptible to injury in the case of a humerus shaft fracture, which can result in impaired wrist extension.
The Radial Nerve: Anatomy, Innervation, and Patterns of Damage
The radial nerve is a continuation of the posterior cord of the brachial plexus, with root values ranging from C5 to T1. It travels through the axilla, posterior to the axillary artery, and enters the arm between the brachial artery and the long head of triceps. From there, it spirals around the posterior surface of the humerus in the groove for the radial nerve before piercing the intermuscular septum and descending in front of the lateral epicondyle. At the lateral epicondyle, it divides into a superficial and deep terminal branch, with the deep branch crossing the supinator to become the posterior interosseous nerve.
The radial nerve innervates several muscles, including triceps, anconeus, brachioradialis, and extensor carpi radialis. The posterior interosseous branch innervates supinator, extensor carpi ulnaris, extensor digitorum, and other muscles. Denervation of these muscles can lead to weakness or paralysis, with effects ranging from minor effects on shoulder stability to loss of elbow extension and weakening of supination of prone hand and elbow flexion in mid prone position.
Damage to the radial nerve can result in wrist drop and sensory loss to a small area between the dorsal aspect of the 1st and 2nd metacarpals. Axillary damage can also cause paralysis of triceps. Understanding the anatomy, innervation, and patterns of damage of the radial nerve is important for diagnosing and treating conditions that affect this nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 3
Incorrect
-
A 35-year-old motorcyclist is in a road traffic collision resulting in a severely displaced humerus fracture. During surgical repair, the surgeon observes an injury to the radial nerve. Which of the following muscles is most likely to be unaffected by this injury?
Your Answer: Abductor pollicis longus
Correct Answer: None of the above
Explanation:BEST
The Radial Nerve: Anatomy, Innervation, and Patterns of Damage
The radial nerve is a continuation of the posterior cord of the brachial plexus, with root values ranging from C5 to T1. It travels through the axilla, posterior to the axillary artery, and enters the arm between the brachial artery and the long head of triceps. From there, it spirals around the posterior surface of the humerus in the groove for the radial nerve before piercing the intermuscular septum and descending in front of the lateral epicondyle. At the lateral epicondyle, it divides into a superficial and deep terminal branch, with the deep branch crossing the supinator to become the posterior interosseous nerve.
The radial nerve innervates several muscles, including triceps, anconeus, brachioradialis, and extensor carpi radialis. The posterior interosseous branch innervates supinator, extensor carpi ulnaris, extensor digitorum, and other muscles. Denervation of these muscles can lead to weakness or paralysis, with effects ranging from minor effects on shoulder stability to loss of elbow extension and weakening of supination of prone hand and elbow flexion in mid prone position.
Damage to the radial nerve can result in wrist drop and sensory loss to a small area between the dorsal aspect of the 1st and 2nd metacarpals. Axillary damage can also cause paralysis of triceps. Understanding the anatomy, innervation, and patterns of damage of the radial nerve is important for diagnosing and treating conditions that affect this nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 4
Incorrect
-
A young woman comes in with a gunshot wound and exhibits spastic weakness on the left side of her body. She also has lost proprioception and vibration on the same side, while experiencing a loss of pain and temperature sensation on the opposite side. The sensory deficits begin at the level of the umbilicus. Where is the lesion located and what is its nature?
Your Answer: Left-sided Brown-Sequard syndrome at L1
Correct Answer: Left-sided Brown-Sequard syndrome at T10
Explanation:The symptoms described indicate a T10 lesion on the left side, which is known as Brown-Sequard syndrome. This condition causes spastic paralysis on the same side as the lesion, as well as a loss of proprioception and vibration sensation. On the opposite side of the lesion, there is a loss of pain and temperature sensation. It is important to note that transverse myelitis is not the cause of these symptoms, as it presents differently.
Spinal cord lesions can affect different tracts and result in various clinical symptoms. Motor lesions, such as amyotrophic lateral sclerosis and poliomyelitis, affect either upper or lower motor neurons, resulting in spastic paresis or lower motor neuron signs. Combined motor and sensory lesions, such as Brown-Sequard syndrome, subacute combined degeneration of the spinal cord, Friedrich’s ataxia, anterior spinal artery occlusion, and syringomyelia, affect multiple tracts and result in a combination of spastic paresis, loss of proprioception and vibration sensation, limb ataxia, and loss of pain and temperature sensation. Multiple sclerosis can involve asymmetrical and varying spinal tracts and result in a combination of motor, sensory, and ataxia symptoms. Sensory lesions, such as neurosyphilis, affect the dorsal columns and result in loss of proprioception and vibration sensation.
-
This question is part of the following fields:
- Neurological System
-
-
Question 5
Correct
-
A 22-year-old man suffers a depressed skull fracture at the vertex after being struck with a hammer. Which of the following sinuses is in danger due to this injury?
Your Answer: Superior sagittal sinus
Explanation:The pattern of injury poses the highest threat to the superior sagittal sinus, which starts at the crista galli’s front and runs along the falx cerebri towards the back. It merges with the right transverse sinus close to the internal occipital protuberance.
Overview of Cranial Venous Sinuses
The cranial venous sinuses are a series of veins located within the dura mater, the outermost layer of the brain. Unlike other veins in the body, they do not have valves, which can increase the risk of sepsis spreading. These sinuses eventually drain into the internal jugular vein.
There are several cranial venous sinuses, including the superior sagittal sinus, inferior sagittal sinus, straight sinus, transverse sinus, sigmoid sinus, confluence of sinuses, occipital sinus, and cavernous sinus. Each of these sinuses has a specific location and function within the brain.
To better understand the topography of the cranial venous sinuses, it is helpful to visualize them as a map. The superior sagittal sinus runs along the top of the brain, while the inferior sagittal sinus runs along the bottom. The straight sinus connects the two, while the transverse sinus runs horizontally across the back of the brain. The sigmoid sinus then curves downward and connects to the internal jugular vein. The confluence of sinuses is where several of these sinuses meet, while the occipital sinus is located at the back of the head. Finally, the cavernous sinus is located on either side of the pituitary gland.
Understanding the location and function of these cranial venous sinuses is important for diagnosing and treating various neurological conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 6
Incorrect
-
A 65-year-old patient has presented to your neurology clinic for a routine follow-up a couple of months after being diagnosed with progressive muscular atrophy, a variant of motor neuron disease (MND) that results in a lower motor neuron lesion pattern.
What signs would you anticipate observing during the examination?Your Answer: Hypotonia and hyperreflexia
Correct Answer: Hypotonia and hyporeflexia
Explanation:Lower motor neuron lesions result in a reduction of muscle tone and reflexes, which is characterized by hypotonia and hyporeflexia. Additionally, atrophy, wasting, and fasciculations may be observed in the affected muscle groups. It is important to note that hypertonia and hyperreflexia are indicative of an upper motor neuron lesion, and a combination of hypertonia and hyporeflexia or hypotonia and hyperreflexia are not typical patterns of a lower motor neuron lesion. Therefore, normal muscle tone and reflexes would not be expected in a patient with a lower motor neuron lesion.
The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.
One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.
-
This question is part of the following fields:
- Neurological System
-
-
Question 7
Correct
-
A 6-year-old child has been in a car accident and has a fracture of the floor of the orbit. The surgeon you consulted is worried that one of the extra-ocular muscles may be trapped in the fracture site. Which muscle is most vulnerable?
Your Answer: Inferior rectus
Explanation:The correct muscle that is most at risk in a fracture of the floor of the orbit, also known as an orbital blowout fracture, is the inferior rectus muscle. This muscle is located above the thin plate of the maxillary bone that makes up the floor of the orbit, and is therefore more susceptible to being trapped in these types of fractures.
When the inferior rectus muscle becomes trapped in a blowout fracture, it can result in restricted eye movements and affect extra-orbital soft tissue. This type of fracture is known as a trapdoor fracture and is often associated with the oculocardiac reflex or Aschner phenomenon, which can cause symptoms such as bradycardia, nausea and vomiting, vertigo, and syncope.
It is important to note that the inferior oblique muscle is also commonly affected in these types of fractures, but it was not an option in this question. Additionally, levator palpebrae inferioris is not an actual muscle and is therefore a dummy answer. The muscle that raises the upper eyelid is actually called the levator palpebrae superioris.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 8
Incorrect
-
A 76-year-old man is scheduled for an internal carotid artery endarterectomy. During the dissection, which nervous structure is most vulnerable?
Your Answer: Recurrent laryngeal nerve
Correct Answer: Hypoglossal nerve
Explanation:The carotid endarterectomy procedure poses a risk to several nerves, including the hypoglossal nerve, greater auricular nerve, and superior laryngeal nerve. The dissection of the sternocleidomastoid muscle, ligation of the common facial vein, and exposure of the common and internal carotid arteries can all potentially damage these nerves. However, the sympathetic chain located posteriorly is less susceptible to injury during this operation.
The internal carotid artery originates from the common carotid artery near the upper border of the thyroid cartilage and travels upwards to enter the skull through the carotid canal. It then passes through the cavernous sinus and divides into the anterior and middle cerebral arteries. In the neck, it is surrounded by various structures such as the longus capitis, pre-vertebral fascia, sympathetic chain, and superior laryngeal nerve. It is also closely related to the external carotid artery, the wall of the pharynx, the ascending pharyngeal artery, the internal jugular vein, the vagus nerve, the sternocleidomastoid muscle, the lingual and facial veins, and the hypoglossal nerve. Inside the cranial cavity, the internal carotid artery bends forwards in the cavernous sinus and is closely related to several nerves such as the oculomotor, trochlear, ophthalmic, and maxillary nerves. It terminates below the anterior perforated substance by dividing into the anterior and middle cerebral arteries and gives off several branches such as the ophthalmic artery, posterior communicating artery, anterior choroid artery, meningeal arteries, and hypophyseal arteries.
-
This question is part of the following fields:
- Neurological System
-
-
Question 9
Incorrect
-
A young physician encounters two patients with ulnar nerve palsy in rapid succession. The initial patient has a wrist injury and displays a severe hand deformity resembling a claw. The subsequent patient has an elbow injury and exhibits a similar, albeit less severe, deformity. What is the reason for the counterintuitive observation that the presentation is milder at the site of injury closer to the body?
Your Answer: Less severe injury of ulnar nerve due to protection from surrounding muscles
Correct Answer: Denervation of flexor digitorum profundus muscle
Explanation:Injuries to the proximal ulnar nerve result in the loss of function of the flexor digitorum profundus muscle, leading to a decrease in finger flexion and a reduction in the claw-like appearance seen in more distal injuries. This process does not involve the flexor digitorum superficialis muscle or any protective action from surrounding muscles.
The ulnar nerve originates from the medial cord of the brachial plexus, specifically from the C8 and T1 nerve roots. It provides motor innervation to various muscles in the hand, including the medial two lumbricals, adductor pollicis, interossei, hypothenar muscles (abductor digiti minimi, flexor digiti minimi), and flexor carpi ulnaris. Sensory innervation is also provided to the medial 1 1/2 fingers on both the palmar and dorsal aspects. The nerve travels through the posteromedial aspect of the upper arm and enters the palm of the hand via Guyon’s canal, which is located superficial to the flexor retinaculum and lateral to the pisiform bone.
The ulnar nerve has several branches that supply different muscles and areas of the hand. The muscular branch provides innervation to the flexor carpi ulnaris and the medial half of the flexor digitorum profundus. The palmar cutaneous branch arises near the middle of the forearm and supplies the skin on the medial part of the palm, while the dorsal cutaneous branch supplies the dorsal surface of the medial part of the hand. The superficial branch provides cutaneous fibers to the anterior surfaces of the medial one and one-half digits, and the deep branch supplies the hypothenar muscles, all the interosseous muscles, the third and fourth lumbricals, the adductor pollicis, and the medial head of the flexor pollicis brevis.
Damage to the ulnar nerve at the wrist can result in a claw hand deformity, where there is hyperextension of the metacarpophalangeal joints and flexion at the distal and proximal interphalangeal joints of the 4th and 5th digits. There may also be wasting and paralysis of intrinsic hand muscles (except for the lateral two lumbricals), hypothenar muscles, and sensory loss to the medial 1 1/2 fingers on both the palmar and dorsal aspects. Damage to the nerve at the elbow can result in similar symptoms, but with the addition of radial deviation of the wrist. It is important to diagnose and treat ulnar nerve damage promptly to prevent long-term complications.
-
This question is part of the following fields:
- Neurological System
-
-
Question 10
Incorrect
-
A cranial nerve examination is being performed on a partially conscious patient in the emergency room who has a history of sharp, severe headaches that are brief in duration. They have recently experienced significant head trauma. The absence of the corneal reflex suggests potential damage to the ophthalmic nerve.
Through which skull foramina does this nerve travel?Your Answer: Optic canal
Correct Answer: Superior orbital fissure
Explanation:The superior orbital fissure is the pathway for the ophthalmic branch of the trigeminal nerve.
The optic canal is the route for the optic nerve.
The zygomaticofacial foramen is a tiny opening that accommodates the zygomaticofacial nerve and vessels.
The jugular foramen is the passage for cranial nerves IX, X, and XI.
The supraorbital nerve and vessels traverse through the supraorbital foramen, which is situated directly beneath the eyebrow.
Foramina of the Skull
The foramina of the skull are small openings in the bones that allow for the passage of nerves and blood vessels. These foramina are important for the proper functioning of the body and can be tested on exams. Some of the major foramina include the optic canal, superior and inferior orbital fissures, foramen rotundum, foramen ovale, and jugular foramen. Each of these foramina has specific vessels and nerves that pass through them, such as the ophthalmic artery and optic nerve in the optic canal, and the mandibular nerve in the foramen ovale. It is important to have a basic understanding of these foramina and their contents in order to understand the anatomy and physiology of the head and neck.
-
This question is part of the following fields:
- Neurological System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)